File size: 2,835 Bytes
93cb4db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import torch
from torch import nn
from torch.nn import functional as F
from collections import OrderedDict


class SimpleDecoding(nn.Module):
    def __init__(self, dims, factor=2):
        super(SimpleDecoding, self).__init__()

        hidden_size = dims[-1]//factor
        c4_size = dims[-1] 
        c3_size = dims[-2]
        c2_size = dims[-3]
        c1_size = dims[-4]

        self.conv1_4 = nn.Conv2d(c4_size+c3_size, hidden_size, 3, padding=1, bias=False)
        self.bn1_4 = nn.BatchNorm2d(hidden_size)
        self.relu1_4 = nn.ReLU()
        self.conv2_4 = nn.Conv2d(hidden_size, hidden_size, 3, padding=1, bias=False)
        self.bn2_4 = nn.BatchNorm2d(hidden_size)
        self.relu2_4 = nn.ReLU()

        self.conv1_3 = nn.Conv2d(hidden_size + c2_size, hidden_size, 3, padding=1, bias=False)
        self.bn1_3 = nn.BatchNorm2d(hidden_size)
        self.relu1_3 = nn.ReLU()
        self.conv2_3 = nn.Conv2d(hidden_size, hidden_size, 3, padding=1, bias=False)
        self.bn2_3 = nn.BatchNorm2d(hidden_size)
        self.relu2_3 = nn.ReLU()

        self.conv1_2 = nn.Conv2d(hidden_size + c1_size, hidden_size, 3, padding=1, bias=False)
        self.bn1_2 = nn.BatchNorm2d(hidden_size)
        self.relu1_2 = nn.ReLU()
        self.conv2_2 = nn.Conv2d(hidden_size, hidden_size, 3, padding=1, bias=False)
        self.bn2_2 = nn.BatchNorm2d(hidden_size)
        self.relu2_2 = nn.ReLU()

        self.conv1_1 = nn.Conv2d(hidden_size, 2, 1)

    def forward(self, x_c4, x_c3, x_c2, x_c1):
        # fuse Y4 and Y3
        if x_c4.size(-2) < x_c3.size(-2) or x_c4.size(-1) < x_c3.size(-1):
            x_c4 = F.interpolate(input=x_c4, size=(x_c3.size(-2), x_c3.size(-1)), mode='bilinear', align_corners=True)
        x = torch.cat([x_c4, x_c3], dim=1)
        x = self.conv1_4(x)
        x = self.bn1_4(x)
        x = self.relu1_4(x)
        x = self.conv2_4(x)
        x = self.bn2_4(x)
        x = self.relu2_4(x)
        # fuse top-down features and Y2 features
        if x.size(-2) < x_c2.size(-2) or x.size(-1) < x_c2.size(-1):
            x = F.interpolate(input=x, size=(x_c2.size(-2), x_c2.size(-1)), mode='bilinear', align_corners=True)
        x = torch.cat([x, x_c2], dim=1)
        x = self.conv1_3(x)
        x = self.bn1_3(x)
        x = self.relu1_3(x)
        x = self.conv2_3(x)
        x = self.bn2_3(x)
        x = self.relu2_3(x)
        # fuse top-down features and Y1 features
        if x.size(-2) < x_c1.size(-2) or x.size(-1) < x_c1.size(-1):
            x = F.interpolate(input=x, size=(x_c1.size(-2), x_c1.size(-1)), mode='bilinear', align_corners=True)
        x = torch.cat([x, x_c1], dim=1)
        x = self.conv1_2(x)
        x = self.bn1_2(x)
        x = self.relu1_2(x)
        x = self.conv2_2(x)
        x = self.bn2_2(x)
        x = self.relu2_2(x)

        return self.conv1_1(x)