File size: 8,693 Bytes
bcec54e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# MIT License

# Copyright (c) 2022 Intelligent Systems Lab Org

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# File author: Shariq Farooq Bhat

import torch
import torch.nn as nn


@torch.jit.script
def exp_attractor(dx, alpha: float = 300, gamma: int = 2):
    """Exponential attractor: dc = exp(-alpha*|dx|^gamma) * dx , where dx = a - c, a = attractor point, c = bin center, dc = shift in bin centermmary for exp_attractor

    Args:
        dx (torch.Tensor): The difference tensor dx = Ai - Cj, where Ai is the attractor point and Cj is the bin center.
        alpha (float, optional): Proportional Attractor strength. Determines the absolute strength. Lower alpha = greater attraction. Defaults to 300.
        gamma (int, optional): Exponential Attractor strength. Determines the "region of influence" and indirectly number of bin centers affected. Lower gamma = farther reach. Defaults to 2.

    Returns:
        torch.Tensor : Delta shifts - dc; New bin centers = Old bin centers + dc
    """
    return torch.exp(-alpha*(torch.abs(dx)**gamma)) * (dx)


@torch.jit.script
def inv_attractor(dx, alpha: float = 300, gamma: int = 2):
    """Inverse attractor: dc = dx / (1 + alpha*dx^gamma), where dx = a - c, a = attractor point, c = bin center, dc = shift in bin center
    This is the default one according to the accompanying paper. 

    Args:
        dx (torch.Tensor): The difference tensor dx = Ai - Cj, where Ai is the attractor point and Cj is the bin center.
        alpha (float, optional): Proportional Attractor strength. Determines the absolute strength. Lower alpha = greater attraction. Defaults to 300.
        gamma (int, optional): Exponential Attractor strength. Determines the "region of influence" and indirectly number of bin centers affected. Lower gamma = farther reach. Defaults to 2.

    Returns:
        torch.Tensor: Delta shifts - dc; New bin centers = Old bin centers + dc
    """
    return dx.div(1+alpha*dx.pow(gamma))


class AttractorLayer(nn.Module):
    def __init__(self, in_features, n_bins, n_attractors=16, mlp_dim=128, min_depth=1e-3, max_depth=10,
                 alpha=300, gamma=2, kind='sum', attractor_type='exp', memory_efficient=False):
        """
        Attractor layer for bin centers. Bin centers are bounded on the interval (min_depth, max_depth)
        """
        super().__init__()

        self.n_attractors = n_attractors
        self.n_bins = n_bins
        self.min_depth = min_depth
        self.max_depth = max_depth
        self.alpha = alpha
        self.gamma = gamma
        self.kind = kind
        self.attractor_type = attractor_type
        self.memory_efficient = memory_efficient

        self._net = nn.Sequential(
            nn.Conv2d(in_features, mlp_dim, 1, 1, 0),
            nn.ReLU(inplace=True),
            nn.Conv2d(mlp_dim, n_attractors*2, 1, 1, 0),  # x2 for linear norm
            nn.ReLU(inplace=True)
        )

    def forward(self, x, b_prev, prev_b_embedding=None, interpolate=True, is_for_query=False):
        """
        Args:
            x (torch.Tensor) : feature block; shape - n, c, h, w
            b_prev (torch.Tensor) : previous bin centers normed; shape - n, prev_nbins, h, w
        
        Returns:
            tuple(torch.Tensor,torch.Tensor) : new bin centers normed and scaled; shape - n, nbins, h, w
        """
        if prev_b_embedding is not None:
            if interpolate:
                prev_b_embedding = nn.functional.interpolate(
                    prev_b_embedding, x.shape[-2:], mode='bilinear', align_corners=True)
            x = x + prev_b_embedding

        A = self._net(x)
        eps = 1e-3
        A = A + eps
        n, c, h, w = A.shape
        A = A.view(n, self.n_attractors, 2, h, w)
        A_normed = A / A.sum(dim=2, keepdim=True)  # n, a, 2, h, w
        A_normed = A[:, :, 0, ...]  # n, na, h, w

        b_prev = nn.functional.interpolate(
            b_prev, (h, w), mode='bilinear', align_corners=True)
        b_centers = b_prev

        if self.attractor_type == 'exp':
            dist = exp_attractor
        else:
            dist = inv_attractor

        if not self.memory_efficient:
            func = {'mean': torch.mean, 'sum': torch.sum}[self.kind]
            # .shape N, nbins, h, w
            delta_c = func(dist(A_normed.unsqueeze(
                2) - b_centers.unsqueeze(1)), dim=1)
        else:
            delta_c = torch.zeros_like(b_centers, device=b_centers.device)
            for i in range(self.n_attractors):
                # .shape N, nbins, h, w
                delta_c += dist(A_normed[:, i, ...].unsqueeze(1) - b_centers)

            if self.kind == 'mean':
                delta_c = delta_c / self.n_attractors

        b_new_centers = b_centers + delta_c
        B_centers = (self.max_depth - self.min_depth) * \
            b_new_centers + self.min_depth
        B_centers, _ = torch.sort(B_centers, dim=1)
        B_centers = torch.clip(B_centers, self.min_depth, self.max_depth)
        return b_new_centers, B_centers


class AttractorLayerUnnormed(nn.Module):
    def __init__(self, in_features, n_bins, n_attractors=16, mlp_dim=128, min_depth=1e-3, max_depth=10,
                 alpha=300, gamma=2, kind='sum', attractor_type='exp', memory_efficient=False):
        """
        Attractor layer for bin centers. Bin centers are unbounded
        """
        super().__init__()

        self.n_attractors = n_attractors
        self.n_bins = n_bins
        self.min_depth = min_depth
        self.max_depth = max_depth
        self.alpha = alpha
        self.gamma = gamma
        self.kind = kind
        self.attractor_type = attractor_type
        self.memory_efficient = memory_efficient

        self._net = nn.Sequential(
            nn.Conv2d(in_features, mlp_dim, 1, 1, 0),
            nn.ReLU(inplace=True),
            nn.Conv2d(mlp_dim, n_attractors, 1, 1, 0),
            nn.Softplus()
        )

    def forward(self, x, b_prev, prev_b_embedding=None, interpolate=True, is_for_query=False):
        """
        Args:
            x (torch.Tensor) : feature block; shape - n, c, h, w
            b_prev (torch.Tensor) : previous bin centers normed; shape - n, prev_nbins, h, w
        
        Returns:
            tuple(torch.Tensor,torch.Tensor) : new bin centers unbounded; shape - n, nbins, h, w. Two outputs just to keep the API consistent with the normed version
        """
        if prev_b_embedding is not None:
            if interpolate:
                prev_b_embedding = nn.functional.interpolate(
                    prev_b_embedding, x.shape[-2:], mode='bilinear', align_corners=True)
            x = x + prev_b_embedding

        A = self._net(x)
        n, c, h, w = A.shape

        b_prev = nn.functional.interpolate(
            b_prev, (h, w), mode='bilinear', align_corners=True)
        b_centers = b_prev

        if self.attractor_type == 'exp':
            dist = exp_attractor
        else:
            dist = inv_attractor

        if not self.memory_efficient:
            func = {'mean': torch.mean, 'sum': torch.sum}[self.kind]
            # .shape N, nbins, h, w
            delta_c = func(
                dist(A.unsqueeze(2) - b_centers.unsqueeze(1)), dim=1)
        else:
            delta_c = torch.zeros_like(b_centers, device=b_centers.device)
            for i in range(self.n_attractors):
                delta_c += dist(A[:, i, ...].unsqueeze(1) -
                                b_centers)  # .shape N, nbins, h, w

            if self.kind == 'mean':
                delta_c = delta_c / self.n_attractors

        b_new_centers = b_centers + delta_c
        B_centers = b_new_centers

        return b_new_centers, B_centers