Spaces:
Sleeping
Sleeping
File size: 12,133 Bytes
82acae5 36c2d0d 26eb3fd 82acae5 3b9c7c1 82acae5 f8089f9 3b9c7c1 82acae5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import streamlit as st
import joblib
import pandas as pd
# Page config
st.set_page_config(
page_title="❤️ Heart Disease Prediction System",
page_icon="❤️",
layout="wide",
initial_sidebar_state="expanded"
)
# trained model
@st.cache_resource
def load_model():
try:
production_model = joblib.load('models/uci_heart_disease_model.pkl')
return production_model['model'], production_model['metadata']['threshold']
except Exception as e:
st.error(f"Error loading model: {e}")
st.stop()
model, optimal_threshold = load_model()
def predict_heart_disease(user_input):
try:
# Feature engineering
user_input['hr_age_ratio'] = user_input['thalach'] / (user_input['age'] + 1e-5)
user_input['bp_oldpeak'] = user_input['trestbps'] * (user_input['oldpeak'] + 1)
user_input['risk_score'] = (user_input['age'] / 50 + user_input['chol'] / 200 + user_input['trestbps'] / 140)
#prediction
probabilities = model.predict_proba(user_input)[:, 1]
predictions = (probabilities >= optimal_threshold).astype(int)
# results DataFrame
results = pd.DataFrame({
'Prediction': predictions,
'Diagnosis': ['Heart Disease' if p == 1 else 'Healthy' for p in predictions],
'Probability': probabilities,
})
# input features for display
display_data = pd.concat([user_input[['age', 'sex', 'cp', 'trestbps', 'chol']], results], axis=1)
return results, display_data
except Exception as e:
st.error(f"Prediction error: {e}")
return None, None
# Main app interface
st.title("❤️ Heart Disease Prediction")
# tabs
tab1, tab2 ,tab3= st.tabs(["Single Prediction", "Batch Prediction","Data & Model Info"])
with tab1:
st.header("Single Patient Prediction")
# Input form
with st.form("prediction_form"):
col1, col2 = st.columns(2)
with col1:
st.subheader("Patient Information")
age = st.slider("Age", 18, 100, 50)
sex = st.radio("Sex", ["Male (1)", "Female (0)"], index=0)
cp = st.selectbox("Chest Pain Type",
["Typical angina (1)", "Atypical angina (2)",
"Non-anginal pain (3)", "Asymptomatic (4)"])
trestbps = st.slider("Resting Blood Pressure (mmHg)", 90, 200, 120)
chol = st.slider("Serum Cholesterol (mg/dl)", 150, 350, 200)
with col2:
st.subheader("Clinical Measurements")
fbs = st.radio("Fasting Blood Sugar > 120 mg/dl", ["Yes (1)", "No (0)"], index=1)
restecg = st.selectbox("Resting ECG Results",
["Normal (0)", "ST-T wave abnormality (1)",
"Left ventricular hypertrophy (2)"])
thalach = st.slider("Maximum Heart Rate Achieved (bpm)", 60, 200, 150)
exang = st.radio("Exercise Induced Angina", ["Yes (1)", "No (0)"], index=1)
oldpeak = st.slider("ST Depression Induced by Exercise", 0.0, 6.0, 1.0, step=0.1)
slope = st.selectbox("Slope of Peak Exercise ST Segment",
["Upsloping (1)", "Flat (2)", "Downsloping (3)"])
ca = st.slider("Number of Major Vessels", 0, 4, 0)
thal = st.selectbox("Thalassemia",
["Normal (3)", "Fixed defect (6)", "Reversible defect (7)"])
submitted = st.form_submit_button("Predict Heart Disease Risk")
if submitted:
# Preprocess inputs
user_input = pd.DataFrame({
'age': [age],
'sex': [1 if sex.startswith("Male") else 0],
'cp': [int(cp.split("(")[1].strip(")"))],
'trestbps': [trestbps],
'chol': [chol],
'fbs': [1 if fbs.startswith("Yes") else 0],
'restecg': [int(restecg.split("(")[1].strip(")"))],
'thalach': [thalach],
'exang': [1 if exang.startswith("Yes") else 0],
'oldpeak': [oldpeak],
'slope': [int(slope.split("(")[1].strip(")"))],
'ca': [ca],
'thal': [int(thal.split("(")[1].strip(")"))],
})
# predictions
results, display_data = predict_heart_disease(user_input)
if results is not None:
st.subheader("Prediction Results")
# formatted results
st.markdown(f"""
### Heart Disease Prediction Results
**Using threshold:** {optimal_threshold:.3f}
""")
# results section
with st.expander("View Detailed Results"):
st.dataframe(display_data)
# risk assessment
probability = results['Probability'].iloc[0]
prediction = results['Diagnosis'].iloc[0]
if probability > 0.7:
risk_level = "High"
recommendation = "Immediate consultation with cardiologist recommended"
color = "red"
elif probability > 0.4:
risk_level = "Medium"
recommendation = "Further tests recommended"
color = "orange"
else:
risk_level = "Low"
recommendation = "No immediate concerns, maintain regular checkups"
color = "green"
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Prediction", prediction)
with col2:
st.metric("Probability", f"{probability * 100:.2f}%")
with col3:
st.metric("Risk Level", risk_level)
# recommendation
st.markdown(f"""
<div style='background-color:#f0f2f6; padding:10px; border-radius:5px;'>
<h4 style='color:{color};'>Recommendation: {recommendation}</h4>
</div>
""", unsafe_allow_html=True)
with tab2:
st.header("Batch Prediction")
uploaded_file = st.file_uploader("Upload CSV file with patient data", type=["csv"])
if uploaded_file is not None:
try:
test_data = pd.read_csv(uploaded_file)
st.success("File uploaded successfully!")
# required columns
required_cols = ['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg',
'thalach', 'exang', 'oldpeak', 'slope', 'ca', 'thal']
missing_cols = [col for col in required_cols if col not in test_data.columns]
if missing_cols:
st.error(f"Missing required columns: {', '.join(missing_cols)}")
else:
# predictions
results, display_data = predict_heart_disease(test_data)
if results is not None:
st.subheader("Prediction Results")
# summary statistics
st.markdown(f"""
### Batch Prediction Results
**Using threshold:** {optimal_threshold:.3f}
""")
# results with original data
full_results = test_data.copy()
full_results['Probability'] = results['Probability']
full_results['Prediction'] = results['Prediction']
full_results['Diagnosis'] = results['Diagnosis']
# results section
with st.expander("View All Predictions"):
st.dataframe(full_results)
# statistics
st.subheader("Statistics")
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Total Patients", len(full_results))
with col2:
st.metric("Heart Disease Cases", full_results['Prediction'].sum())
with col3:
st.metric("Healthy Cases", len(full_results) - full_results['Prediction'].sum())
#download button
csv = full_results.to_csv(index=False)
st.download_button(
"Download Results",
csv,
"heart_disease_predictions.csv",
"text/csv"
)
except Exception as e:
st.error(f"Error processing file: {e}")
sample_data = pd.DataFrame({
'age': [52, 63, 45, 67, 58],
'sex': [1, 1, 0, 0, 1],
'cp': [3, 4, 2, 3, 4],
'trestbps': [125, 145, 130, 120, 136],
'chol': [212, 233, 204, 228, 319],
'fbs': [0, 1, 0, 0, 0],
'restecg': [0, 1, 0, 1, 0],
'thalach': [168, 150, 172, 129, 152],
'exang': [0, 0, 0, 1, 0],
'oldpeak': [1.0, 2.3, 1.4, 2.6, 0.0],
'slope': [2, 3, 1, 2, 1],
'ca': [2, 0, 0, 1, 0],
'thal': [3, 3, 3, 7, 3]
})
with tab3:
st.header("Data & Model Information")
st.subheader("🧠 Model & System Info")
st.markdown("""
- **Developed by:** Musabbir KM
- **Model Name:** Heart-Guard
- **Version:** 1.1
- **Classifier:** XGBoost
- **Optimized Threshold:** 0.327
""")
st.subheader("Dataset Information")
st.markdown("""
The model was trained on the UCI Heart Disease Dataset containing the following features:
- **Demographic**: Age, Sex
- **Clinical**: Blood Pressure, Cholesterol, etc.
- **Electrocardiographic**: Resting ECG, Exercise ST segment, etc.
""")
st.subheader("Sample Data")
st.dataframe(sample_data)
st.subheader("Model Performance")
st.markdown("""
- **Accuracy**: 85.2% (on test set)
- **Precision**: 83.1%
- **Recall**: 87.5%
- **F1-score**: 85.2%
**📈 Additional Metrics:**
- **ROC AUC:** `0.909`
- **Sensitivity (Recall):** `0.95` _(for Heart Disease)_
- **Specificity:** `0.76` _(for Healthy)_
- **Balanced Accuracy:** `0.855`
- **False Positive Rate (FPR):** `0.24`
- **False Negative Rate (FNR):** `0.05`
- **Precision (Heart Disease):** `0.80`
- **Precision (Healthy):** `0.95`
- **F1 Score (Overall):** `0.85`
- **Support Size:** `46` patients
""")
st.subheader("Risk Interpretation Guide")
st.markdown("""
- **High Risk (>70%)**: Strong recommendation for cardiologist consultation
- **Medium Risk (40-70%)**: Suggest additional tests
- **Low Risk (<40%)**: Likely healthy, maintain regular checkups
""")
st.subheader("Terms of Use")
st.markdown("""
This tool is for informational purposes only and should not replace
professional medical advice. Always consult a healthcare provider
for medical diagnosis and treatment.
""")
# Sidebar with info
with st.sidebar:
st.title("❤️ Heart Disease Prediction")
st.markdown("""
## 🧠 Model & System Info
This application predicts the likelihood of heart disease based on clinical features using a machine learning model.
- **Developed by:** Musabbir KM
- **Model Name:** Heart-Guard
- **Version:** 1.1
### Model Information
- **Algorithm**: Random Forest Classifier
- **Dataset**: UCI Heart Disease Dataset
- **Optimal Threshold**: {:.3f}
- **Version**: 1.1
### How It Works
1. Enter patient details
2. Click 'Predict' button
3. View prediction results
""".format(optimal_threshold))
st.markdown("---")
st.markdown("""
### Feature Descriptions
- **Age**: Patient's age in years
- **Sex**: Gender (1 = Male, 0 = Female)
- **CP**: Chest pain type (1-4)
- **Trestbps**: Resting blood pressure (mmHg)
- **Chol**: Serum cholesterol (mg/dl)
- **FBS**: Fasting blood sugar > 120 mg/dl
- **Restecg**: Resting ECG results
- **Thalach**: Maximum heart rate achieved
- **Exang**: Exercise induced angina
- **Oldpeak**: ST depression induced by exercise
- **Slope**: Slope of peak exercise ST segment
- **CA**: Number of major vessels colored by fluoroscopy
- **Thal**: Thalassemia (3,6,7)
""")
|