Spaces:
Running
Running
File size: 50,004 Bytes
2ec6e39 b52568e 2ec6e39 7b1cdc1 b52568e 2ec6e39 937edee b52568e 937edee 2ec6e39 b52568e 3326c44 2ec6e39 d901c93 5a3709f eb25c8a 644d661 eb25c8a 5a3709f b52568e dd4c4fc b52568e 2fd8576 b52568e 49ee82c 5a3709f eb25c8a 644d661 eb25c8a 49ee82c eb25c8a 5a3709f 49ee82c 2fd8576 49ee82c 0eef2b8 5a3709f 0eef2b8 5a3709f 0eef2b8 49ee82c b52568e 5a3709f eb25c8a 644d661 eb25c8a 0ada19e eb25c8a 5a3709f b52568e dd4c4fc b52568e 0ada19e b52568e 49ee82c 5a3709f eb25c8a 644d661 eb25c8a 49ee82c eb25c8a 5a3709f 49ee82c 0ada19e 0eef2b8 5a3709f 0eef2b8 5a3709f 0eef2b8 b52568e eb25c8a 644d661 baf6e4b bab4530 05a5283 bab4530 dd11913 644d661 d01a961 eb25c8a 644d661 eb25c8a 644d661 baf6e4b bab4530 e4db190 644d661 d01a961 eb25c8a 644d661 b52568e eb25c8a 644d661 211070a db8fcd5 0f5f58e bab4530 05a5283 bab4530 dd11913 644d661 d01a961 eb25c8a 644d661 eb25c8a 644d661 211070a db8fcd5 bab4530 e4db190 644d661 d01a961 eb25c8a 644d661 b52568e 5a3709f edc819f 8de59cc edc819f 5a3709f edc819f e4db190 edc819f 9948927 6789cba edc819f b52568e edc819f b52568e edc819f ddf3ed9 b52568e 317e6a2 eb25c8a 57077e4 0eef2b8 5a3709f 49ee82c 57077e4 b52568e 2ec6e39 b52568e 2ec6e39 b52568e 2ec6e39 b52568e 2ec6e39 b52568e 2ec6e39 b52568e 5a3709f b52568e 5a3709f b52568e 5a3709f b52568e 5a3709f b52568e 2ec6e39 edc819f 2ec6e39 b52568e 2ec6e39 edc819f 317e6a2 57077e4 0eef2b8 b52568e 3fbcd23 b52568e 2ec6e39 b52568e 480be77 4744b18 2ec6e39 edc819f 480be77 b52568e 480be77 b52568e 480be77 b52568e 2ec6e39 b52568e 2ec6e39 b52568e 2ec6e39 b52568e 86e88b4 b52568e 8de59cc 86e88b4 5a3709f b52568e 42001ae b52568e 5a3709f b52568e 5a3709f b52568e 8de59cc 86e88b4 5a3709f b52568e c58a9f3 18ef45f c58a9f3 2e35766 c58a9f3 2e35766 c58a9f3 18ef45f c58a9f3 2e35766 c58a9f3 2e35766 c58a9f3 e42fc82 c58a9f3 18ef45f c58a9f3 2e35766 c58a9f3 2e35766 c58a9f3 18ef45f c58a9f3 2e35766 c58a9f3 2e35766 c58a9f3 e42fc82 a52b06c 5a272b3 18ef45f c58a9f3 b52568e 18ef45f b52568e 711af0e b52568e 9e41cbc b52568e b54cc8c 86e88b4 b52568e 8ad8e4e 86e88b4 b52568e 8de59cc 0a4cccb 6a3a743 8de59cc 6a3a743 8de59cc 0a4cccb 8de59cc b52568e 8de59cc b52568e 86e88b4 b52568e 8de59cc 6a3a743 8de59cc 178e748 8de59cc b52568e 8de59cc b52568e 5f0586f d901c93 5f0586f d901c93 5f0586f 0a4cccb 0608368 8de59cc 0608368 8de59cc 0a4cccb 8de59cc 5f0586f 8de59cc 5f0586f b52568e 800aaba b52568e 800aaba b52568e 86e88b4 b52568e 86e88b4 b52568e 86e88b4 b52568e 86e88b4 b52568e dfbf052 b52568e 86e88b4 5f0586f b52568e 5f0586f b52568e e3a6c00 b52568e 5f0586f b52568e 5f0586f b52568e 5f0586f b52568e 5f0586f b52568e 5f0586f b52568e 5f0586f b52568e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 |
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import gspread
import pymongo
import time
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
return client
client = init_conn()
percentages_format = {'Exposure': '{:.2%}'}
freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
dk_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
fd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
@st.cache_data(ttl = 599)
def init_DK_seed_frames(sport, split):
if sport == 'NFL':
db = client["NFL_Database"]
elif sport == 'NBA':
db = client["NBA_DFS"]
collection = db[f"DK_{sport}_SD_seed_frame"]
cursor = collection.find().limit(split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
DK_seed = raw_display.to_numpy()
return DK_seed
@st.cache_data(ttl = 599)
def init_DK_secondary_seed_frames(sport, split):
if sport == 'NFL':
db = client["NFL_Database"]
elif sport == 'NBA':
db = client["NBA_DFS"]
collection = db[f"DK_{sport}_Secondary_SD_seed_frame"]
cursor = collection.find().limit(split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
DK_second_seed = raw_display.to_numpy()
return DK_second_seed
@st.cache_data(ttl = 599)
def init_DK_auxiliary_seed_frames(sport, split):
if sport == 'NFL':
db = client["NFL_Database"]
elif sport == 'NBA':
db = client["NBA_DFS"]
collection = db[f"DK_{sport}_Auxiliary_SD_seed_frame"]
cursor = collection.find().limit(split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
DK_auxiliary_seed = raw_display.to_numpy()
return DK_auxiliary_seed
@st.cache_data(ttl = 599)
def init_FD_seed_frames(sport, split):
if sport == 'NFL':
db = client["NFL_Database"]
elif sport == 'NBA':
db = client["NBA_DFS"]
collection = db[f"FD_{sport}_SD_seed_frame"]
cursor = collection.find().limit(split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
FD_seed = raw_display.to_numpy()
return FD_seed
@st.cache_data(ttl = 599)
def init_FD_secondary_seed_frames(sport, split):
if sport == 'NFL':
db = client["NFL_Database"]
elif sport == 'NBA':
db = client["NBA_DFS"]
collection = db[f"FD_{sport}_Secondary_SD_seed_frame"]
cursor = collection.find().limit(split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
FD_second_seed = raw_display.to_numpy()
return FD_second_seed
@st.cache_data(ttl = 599)
def init_FD_auxiliary_seed_frames(sport, split):
if sport == 'NFL':
db = client["NFL_Database"]
elif sport == 'NBA':
db = client["NBA_DFS"]
collection = db[f"FD_{sport}_Auxiliary_SD_seed_frame"]
cursor = collection.find().limit(split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
FD_auxiliary_seed = raw_display.to_numpy()
return FD_auxiliary_seed
@st.cache_data(ttl = 599)
def init_baselines(sport):
if sport == 'NFL':
db = client["NFL_Database"]
collection = db['DK_SD_NFL_ROO']
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
raw_display['Small_Field_Own'] = raw_display['Large_Field_Own']
raw_display['small_CPT_Own_raw'] = (raw_display['Small_Field_Own'] / 2) * ((100 - (100-raw_display['Small_Field_Own']))/100)
small_cpt_own_var = 300 / raw_display['small_CPT_Own_raw'].sum()
raw_display['small_CPT_Own'] = raw_display['small_CPT_Own_raw'] * small_cpt_own_var
raw_display['cpt_Median'] = raw_display['Median'] * 1.25
raw_display['STDev'] = raw_display['Median'] / 4
raw_display['CPT_STDev'] = raw_display['cpt_Median'] / 4
dk_raw = raw_display.dropna(subset=['Median'])
collection = db['FD_SD_NFL_ROO']
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
raw_display['Small_Field_Own'] = raw_display['Large_Field_Own']
raw_display['small_CPT_Own'] = raw_display['CPT_Own']
raw_display['cpt_Median'] = raw_display['Median']
raw_display['STDev'] = raw_display['Median'] / 4
raw_display['CPT_STDev'] = raw_display['cpt_Median'] / 4
fd_raw = raw_display.dropna(subset=['Median'])
elif sport == 'NBA':
db = client["NBA_DFS"]
collection = db['Player_SD_Range_Of_Outcomes']
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_id']]
raw_display = raw_display[raw_display['site'] == 'Draftkings']
raw_display['Small_Field_Own'] = raw_display['Small_Own']
raw_display['small_CPT_Own_raw'] = (raw_display['Small_Field_Own'] / 2) * ((100 - (100-raw_display['Small_Field_Own']))/100)
small_cpt_own_var = 300 / raw_display['small_CPT_Own_raw'].sum()
raw_display['small_CPT_Own'] = raw_display['small_CPT_Own_raw'] * small_cpt_own_var
raw_display['cpt_Median'] = raw_display['Median'] * 1.25
raw_display['STDev'] = raw_display['Median'] / 4
raw_display['CPT_STDev'] = raw_display['cpt_Median'] / 4
dk_raw = raw_display.dropna(subset=['Median'])
collection = db['Player_SD_Range_Of_Outcomes']
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_id']]
raw_display = raw_display[raw_display['site'] == 'Fanduel']
raw_display['Small_Field_Own'] = raw_display['Large_Own']
raw_display['small_CPT_Own'] = raw_display['CPT_Own']
raw_display['cpt_Median'] = raw_display['Median']
raw_display['STDev'] = raw_display['Median'] / 4
raw_display['CPT_STDev'] = raw_display['cpt_Median'] / 4
fd_raw = raw_display.dropna(subset=['Median'])
return dk_raw, fd_raw
@st.cache_data
def convert_df(array):
array = pd.DataFrame(array, columns=column_names)
return array.to_csv().encode('utf-8')
@st.cache_data
def calculate_DK_value_frequencies(np_array):
unique, counts = np.unique(np_array[:, :6], return_counts=True)
frequencies = counts / len(np_array) # Normalize by the number of rows
combined_array = np.column_stack((unique, frequencies))
return combined_array
@st.cache_data
def calculate_FD_value_frequencies(np_array):
unique, counts = np.unique(np_array[:, :5], return_counts=True)
frequencies = counts / len(np_array) # Normalize by the number of rows
combined_array = np.column_stack((unique, frequencies))
return combined_array
@st.cache_data
def sim_contest(Sim_size, seed_frame, maps_dict, Contest_Size):
SimVar = 1
Sim_Winners = []
# Pre-vectorize functions
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
vec_cpt_projection_map = np.vectorize(maps_dict['cpt_projection_map'].__getitem__)
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
vec_cpt_stdev_map = np.vectorize(maps_dict['cpt_STDev_map'].__getitem__)
st.write('Simulating contest on frames')
while SimVar <= Sim_size:
fp_random = seed_frame[np.random.choice(seed_frame.shape[0], Contest_Size)]
sample_arrays1 = np.c_[
fp_random,
np.sum(np.random.normal(
loc=np.concatenate([
vec_cpt_projection_map(fp_random[:, 0:1]), # Apply cpt_projection_map to first column
vec_projection_map(fp_random[:, 1:-7]) # Apply original projection to remaining columns
], axis=1),
scale=np.concatenate([
vec_cpt_stdev_map(fp_random[:, 0:1]), # Apply cpt_projection_map to first column
vec_stdev_map(fp_random[:, 1:-7]) # Apply original projection to remaining columns
], axis=1)),
axis=1)
]
sample_arrays = sample_arrays1
final_array = sample_arrays[sample_arrays[:, 7].argsort()[::-1]]
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
Sim_Winners.append(best_lineup)
SimVar += 1
return Sim_Winners
dk_raw, fd_raw = init_baselines('NFL')
tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
with tab2:
col1, col2 = st.columns([1, 7])
with col1:
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
for key in st.session_state.keys():
del st.session_state[key]
dk_raw, fd_raw = init_baselines('NFL')
sport_var1 = st.radio("What sport are you working with?", ('NFL', 'NBA'), key='sport_var1')
slate_var1 = st.radio("Which data are you loading?", ('Showdown', 'Secondary Showdown', 'Auxiliary Showdown'), key='slate_var1')
sharp_split_var = st.number_input("How many lineups do you want?", value=10000, max_value=500000, min_value=10000, step=10000)
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
if site_var1 == 'Draftkings':
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
if team_var1 == 'Specific Teams':
team_var2 = st.multiselect('Which teams do you want?', options = dk_raw['Team'].unique())
elif team_var1 == 'Full Slate':
team_var2 = dk_raw.Team.values.tolist()
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
if stack_var1 == 'Specific Stack Sizes':
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
elif stack_var1 == 'Full Slate':
stack_var2 = [5, 4, 3, 2, 1, 0]
elif site_var1 == 'Fanduel':
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
if team_var1 == 'Specific Teams':
team_var2 = st.multiselect('Which teams do you want?', options = fd_raw['Team'].unique())
elif team_var1 == 'Full Slate':
team_var2 = fd_raw.Team.values.tolist()
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
if stack_var1 == 'Specific Stack Sizes':
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [4, 3, 2, 1, 0])
elif stack_var1 == 'Full Slate':
stack_var2 = [4, 3, 2, 1, 0]
if st.button("Prepare data export", key='data_export'):
if 'working_seed' in st.session_state:
data_export = st.session_state.working_seed.copy()
elif 'working_seed' not in st.session_state:
if site_var1 == 'Draftkings':
if slate_var1 == 'Showdown':
st.session_state.working_seed = init_DK_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif slate_var1 == 'Secondary Showdown':
st.session_state.working_seed = init_DK_secondary_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif slate_var1 == 'Auxiliary Showdown':
st.session_state.working_seed = init_DK_auxiliary_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
raw_baselines = dk_raw
column_names = dk_columns
elif site_var1 == 'Fanduel':
if slate_var1 == 'Showdown':
st.session_state.working_seed = init_FD_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif slate_var1 == 'Secondary Showdown':
st.session_state.working_seed = init_FD_secondary_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif slate_var1 == 'Auxiliary Showdown':
st.session_state.working_seed = init_FD_auxiliary_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
raw_baselines = fd_raw
column_names = fd_columns
data_export = st.session_state.working_seed.copy()
for col in range(6):
data_export[:, col] = np.array([export_id_dict.get(x, x) for x in data_export[:, col]])
st.download_button(
label="Export optimals set",
data=convert_df(data_export),
file_name='NFL_SD_optimals_export.csv',
mime='text/csv',
)
with col2:
if st.button("Load Data", key='load_data'):
if site_var1 == 'Draftkings':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
elif 'working_seed' not in st.session_state:
if slate_var1 == 'Showdown':
st.session_state.working_seed = init_DK_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif slate_var1 == 'Secondary Showdown':
st.session_state.working_seed = init_DK_secondary_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif slate_var1 == 'Auxiliary Showdown':
st.session_state.working_seed = init_DK_auxiliary_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
elif site_var1 == 'Fanduel':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 8], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
elif 'working_seed' not in st.session_state:
if slate_var1 == 'Showdown':
st.session_state.working_seed = init_FD_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif slate_var1 == 'Secondary Showdown':
st.session_state.working_seed = init_FD_secondary_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif slate_var1 == 'Auxiliary Showdown':
st.session_state.working_seed = init_FD_auxiliary_seed_frames(sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
raw_baselines = fd_raw
column_names = fd_columns
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 8], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 9], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
with st.container():
if 'data_export_display' in st.session_state:
st.dataframe(st.session_state.data_export_display.style.format(freq_format, precision=2), use_container_width = True)
with tab1:
col1, col2 = st.columns([1, 7])
with col1:
if st.button("Load/Reset Data", key='reset2'):
st.cache_data.clear()
for key in st.session_state.keys():
del st.session_state[key]
dk_raw, fd_raw = init_baselines('NFL')
sim_sport_var1 = st.radio("What sport are you working with?", ('NFL', 'NBA'), key='sim_sport_var1')
dk_raw, fd_raw = init_baselines(sim_sport_var1)
sim_slate_var1 = st.radio("Which data are you loading?", ('Showdown', 'Secondary Showdown', 'Auxiliary Showdown'), key='sim_slate_var1')
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
if sim_site_var1 == 'Draftkings':
raw_baselines = dk_raw
column_names = dk_columns
elif sim_site_var1 == 'Fanduel':
raw_baselines = fd_raw
column_names = fd_columns
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
if contest_var1 == 'Small':
Contest_Size = 1000
st.write("Small field size is 1,000 entrants.")
raw_baselines['Own'] = raw_baselines['Small_Field_Own']
raw_baselines['CPT_Own'] = raw_baselines['small_CPT_Own']
elif contest_var1 == 'Medium':
Contest_Size = 5000
st.write("Medium field size is 5,000 entrants.")
elif contest_var1 == 'Large':
Contest_Size = 10000
st.write("Large field size is 10,000 entrants.")
elif contest_var1 == 'Custom':
Contest_Size = st.number_input("Insert contest size", value=100, min_value=1, max_value=100000)
strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very'))
if strength_var1 == 'Not Very':
sharp_split = 500000
elif strength_var1 == 'Below Average':
sharp_split = 400000
elif strength_var1 == 'Average':
sharp_split = 300000
elif strength_var1 == 'Above Average':
sharp_split = 200000
elif strength_var1 == 'Very':
sharp_split = 100000
with col2:
if st.button("Run Contest Sim"):
if 'working_seed' in st.session_state:
maps_dict = {
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
'cpt_projection_map':dict(zip(raw_baselines.Player,raw_baselines.cpt_Median)),
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
'cpt_Own_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_Own'])),
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev)),
'cpt_STDev_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_STDev']))
}
Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, Contest_Size)
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
#st.table(Sim_Winner_Frame)
# Initial setup
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
# Type Casting
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
# Sorting
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
# Data Copying
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
# Data Copying
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
else:
if sim_site_var1 == 'Draftkings':
if sim_slate_var1 == 'Showdown':
st.session_state.working_seed = init_DK_seed_frames(sim_sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sim_slate_var1 == 'Secondary Showdown':
st.session_state.working_seed = init_DK_secondary_seed_frames(sim_sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sim_slate_var1 == 'Auxiliary Showdown':
st.session_state.working_seed = init_DK_auxiliary_seed_frames(sim_sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(dk_raw['Player'], dk_raw['player_id']))
raw_baselines = dk_raw
column_names = dk_columns
elif sim_site_var1 == 'Fanduel':
if sim_slate_var1 == 'Showdown':
st.session_state.working_seed = init_FD_seed_frames(sim_sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sim_slate_var1 == 'Secondary Showdown':
st.session_state.working_seed = init_FD_secondary_seed_frames(sim_sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sim_slate_var1 == 'Auxiliary Showdown':
st.session_state.working_seed = init_FD_auxiliary_seed_frames(sim_sport_var1, sharp_split_var)
if sport_var1 == 'NFL':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
elif sport_var1 == 'NBA':
export_id_dict = dict(zip(fd_raw['Player'], fd_raw['player_id']))
raw_baselines = fd_raw
column_names = fd_columns
maps_dict = {
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
'cpt_projection_map':dict(zip(raw_baselines.Player,raw_baselines.cpt_Median)),
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
'cpt_Own_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_Own'])),
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev)),
'cpt_STDev_map':dict(zip(raw_baselines.Player,raw_baselines['CPT_STDev']))
}
Sim_Winners = sim_contest(1000, st.session_state.working_seed, maps_dict, Contest_Size)
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
#st.table(Sim_Winner_Frame)
# Initial setup
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
# Add percent rank columns for ownership at each roster position
# Calculate Dupes column for Fanduel
if sim_site_var1 == 'Fanduel':
dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank']
own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own']
calc_columns = ['own_product', 'avg_own_rank', 'dupes_calc']
Sim_Winner_Frame['CPT_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,0].map(maps_dict['cpt_Own_map']).rank(pct=True)
Sim_Winner_Frame['FLEX1_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,1].map(maps_dict['Own_map']).rank(pct=True)
Sim_Winner_Frame['FLEX2_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,2].map(maps_dict['Own_map']).rank(pct=True)
Sim_Winner_Frame['FLEX3_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,3].map(maps_dict['Own_map']).rank(pct=True)
Sim_Winner_Frame['FLEX4_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,4].map(maps_dict['Own_map']).rank(pct=True)
Sim_Winner_Frame['CPT_Own'] = Sim_Winner_Frame.iloc[:,0].map(maps_dict['cpt_Own_map']) / 100
Sim_Winner_Frame['FLEX1_Own'] = Sim_Winner_Frame.iloc[:,1].map(maps_dict['Own_map']) / 100
Sim_Winner_Frame['FLEX2_Own'] = Sim_Winner_Frame.iloc[:,2].map(maps_dict['Own_map']) / 100
Sim_Winner_Frame['FLEX3_Own'] = Sim_Winner_Frame.iloc[:,3].map(maps_dict['Own_map']) / 100
Sim_Winner_Frame['FLEX4_Own'] = Sim_Winner_Frame.iloc[:,4].map(maps_dict['Own_map']) / 100
# Calculate ownership product and convert to probability
Sim_Winner_Frame['own_product'] = (Sim_Winner_Frame[own_columns].product(axis=1)) + 0.0001
# Calculate average of ownership percent rank columns
Sim_Winner_Frame['avg_own_rank'] = Sim_Winner_Frame[dup_count_columns].mean(axis=1)
# Calculate dupes formula
Sim_Winner_Frame['dupes_calc'] = ((Sim_Winner_Frame['own_product'] * Sim_Winner_Frame['avg_own_rank']) * (Contest_Size * 1.5)) + ((Sim_Winner_Frame['salary'] - 59800) / 100)
# Round and handle negative values
Sim_Winner_Frame['Dupes'] = np.where(
np.round(Sim_Winner_Frame['dupes_calc'], 0) <= 0,
0,
np.round(Sim_Winner_Frame['dupes_calc'], 0) - 1
)
Sim_Winner_Frame['Dupes'] = (Sim_Winner_Frame['Dupes'] * (500000 / sharp_split)) / 2
elif sim_site_var1 == 'Draftkings':
dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank']
own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own']
calc_columns = ['own_product', 'avg_own_rank', 'dupes_calc']
Sim_Winner_Frame['CPT_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,0].map(maps_dict['cpt_Own_map']).rank(pct=True)
Sim_Winner_Frame['FLEX1_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,1].map(maps_dict['Own_map']).rank(pct=True)
Sim_Winner_Frame['FLEX2_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,2].map(maps_dict['Own_map']).rank(pct=True)
Sim_Winner_Frame['FLEX3_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,3].map(maps_dict['Own_map']).rank(pct=True)
Sim_Winner_Frame['FLEX4_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,4].map(maps_dict['Own_map']).rank(pct=True)
Sim_Winner_Frame['FLEX5_Own_percent_rank'] = Sim_Winner_Frame.iloc[:,5].map(maps_dict['Own_map']).rank(pct=True)
Sim_Winner_Frame['CPT_Own'] = Sim_Winner_Frame.iloc[:,0].map(maps_dict['cpt_Own_map']) / 100
Sim_Winner_Frame['FLEX1_Own'] = Sim_Winner_Frame.iloc[:,1].map(maps_dict['Own_map']) / 100
Sim_Winner_Frame['FLEX2_Own'] = Sim_Winner_Frame.iloc[:,2].map(maps_dict['Own_map']) / 100
Sim_Winner_Frame['FLEX3_Own'] = Sim_Winner_Frame.iloc[:,3].map(maps_dict['Own_map']) / 100
Sim_Winner_Frame['FLEX4_Own'] = Sim_Winner_Frame.iloc[:,4].map(maps_dict['Own_map']) / 100
Sim_Winner_Frame['FLEX5_Own'] = Sim_Winner_Frame.iloc[:,5].map(maps_dict['Own_map']) / 100
# Calculate ownership product and convert to probability
Sim_Winner_Frame['own_product'] = (Sim_Winner_Frame[own_columns].product(axis=1))
# Calculate average of ownership percent rank columns
Sim_Winner_Frame['avg_own_rank'] = Sim_Winner_Frame[dup_count_columns].mean(axis=1)
# Calculate dupes formula
Sim_Winner_Frame['dupes_calc'] = ((Sim_Winner_Frame['own_product'] * Sim_Winner_Frame['avg_own_rank']) * (Contest_Size * 1.5)) + ((Sim_Winner_Frame['salary'] - 49800) / 100)
# Round and handle negative values
Sim_Winner_Frame['Dupes'] = np.where(
np.round(Sim_Winner_Frame['dupes_calc'], 0) <= 0,
0,
np.round(Sim_Winner_Frame['dupes_calc'], 0) - 1
)
Sim_Winner_Frame['Dupes'] = (Sim_Winner_Frame['Dupes'] * (500000 / sharp_split)) / 2
Sim_Winner_Frame['Dupes'] = np.round(Sim_Winner_Frame['Dupes'], 0)
Sim_Winner_Frame['Dupes'] = np.where(
np.round(Sim_Winner_Frame['dupes_calc'], 0) <= 0,
0,
np.round(Sim_Winner_Frame['dupes_calc'], 0)
)
Sim_Winner_Frame = Sim_Winner_Frame.drop(columns=dup_count_columns)
Sim_Winner_Frame = Sim_Winner_Frame.drop(columns=own_columns)
Sim_Winner_Frame = Sim_Winner_Frame.drop(columns=calc_columns)
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
# Type Casting
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32, 'Dupes': int}
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
# Sorting
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
# Data Copying
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
st.session_state.Sim_Winner_Export.iloc[:, 0:6] = st.session_state.Sim_Winner_Export.iloc[:, 0:6].apply(lambda x: x.map(export_id_dict))
# Data Copying
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
freq_copy = st.session_state.Sim_Winner_Display
if sim_site_var1 == 'Draftkings':
freq_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:6].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
freq_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:5].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
freq_working['Freq'] = freq_working['Freq'].astype(int)
freq_working['Position'] = freq_working['Player'].map(maps_dict['Pos_map'])
if sim_site_var1 == 'Draftkings':
if sim_sport_var1 == 'NFL':
freq_working['Salary'] = freq_working['Player'].map(maps_dict['Salary_map']) / 1.5
elif sim_sport_var1 == 'NBA':
freq_working['Salary'] = freq_working['Player'].map(maps_dict['Salary_map'])
elif sim_site_var1 == 'Fanduel':
freq_working['Salary'] = freq_working['Player'].map(maps_dict['Salary_map'])
freq_working['Proj Own'] = freq_working['Player'].map(maps_dict['Own_map']) / 100
freq_working['Exposure'] = freq_working['Freq']/(1000)
freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own']
freq_working['Team'] = freq_working['Player'].map(maps_dict['Team_map'])
st.session_state.player_freq = freq_working.copy()
if sim_site_var1 == 'Draftkings':
cpt_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:1].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
cpt_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,0:1].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
cpt_working['Freq'] = cpt_working['Freq'].astype(int)
cpt_working['Position'] = cpt_working['Player'].map(maps_dict['Pos_map'])
if sim_sport_var1 == 'NFL':
cpt_working['Salary'] = cpt_working['Player'].map(maps_dict['Salary_map'])
elif sim_sport_var1 == 'NBA':
cpt_working['Salary'] = cpt_working['Player'].map(maps_dict['Salary_map']) * 1.5
cpt_working['Proj Own'] = cpt_working['Player'].map(maps_dict['cpt_Own_map']) / 100
cpt_working['Exposure'] = cpt_working['Freq']/(1000)
cpt_working['Edge'] = cpt_working['Exposure'] - cpt_working['Proj Own']
cpt_working['Team'] = cpt_working['Player'].map(maps_dict['Team_map'])
st.session_state.sp_freq = cpt_working.copy()
if sim_site_var1 == 'Draftkings':
flex_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,1:6].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
cpt_own_div = 600
elif sim_site_var1 == 'Fanduel':
flex_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,1:5].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
cpt_own_div = 500
flex_working['Freq'] = flex_working['Freq'].astype(int)
flex_working['Position'] = flex_working['Player'].map(maps_dict['Pos_map'])
if sim_site_var1 == 'Draftkings':
if sim_sport_var1 == 'NFL':
flex_working['Salary'] = flex_working['Player'].map(maps_dict['Salary_map']) / 1.5
elif sim_sport_var1 == 'NBA':
flex_working['Salary'] = flex_working['Player'].map(maps_dict['Salary_map'])
elif sim_site_var1 == 'Fanduel':
flex_working['Salary'] = flex_working['Player'].map(maps_dict['Salary_map'])
flex_working['Proj Own'] = (flex_working['Player'].map(maps_dict['Own_map']) / 100) - (flex_working['Player'].map(maps_dict['cpt_Own_map']) / 100)
flex_working['Exposure'] = flex_working['Freq']/(1000)
flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own']
flex_working['Team'] = flex_working['Player'].map(maps_dict['Team_map'])
st.session_state.flex_freq = flex_working.copy()
if sim_site_var1 == 'Draftkings':
team_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,8:9].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
team_working = pd.DataFrame(np.column_stack(np.unique(freq_copy.iloc[:,7:8].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
team_working['Freq'] = team_working['Freq'].astype(int)
team_working['Exposure'] = team_working['Freq']/(1000)
st.session_state.team_freq = team_working.copy()
with st.container():
if st.button("Reset Sim", key='reset_sim'):
for key in st.session_state.keys():
del st.session_state[key]
if 'player_freq' in st.session_state:
player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
if player_split_var2 == 'Specific Players':
find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique())
elif player_split_var2 == 'Full Players':
find_var2 = st.session_state.player_freq.Player.values.tolist()
if player_split_var2 == 'Specific Players':
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)]
if player_split_var2 == 'Full Players':
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
if 'Sim_Winner_Display' in st.session_state:
st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
if 'Sim_Winner_Export' in st.session_state:
st.download_button(
label="Export Full Frame",
data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
file_name='NFL_SD_consim_export.csv',
mime='text/csv',
)
with st.container():
tab1, tab2, tab3, tab4 = st.tabs(['Overall Exposures', 'CPT Exposures', 'FLEX Exposures', 'Team Exposures'])
with tab1:
if 'player_freq' in st.session_state:
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.player_freq.to_csv().encode('utf-8'),
file_name='player_freq_export.csv',
mime='text/csv',
key='overall'
)
with tab2:
if 'sp_freq' in st.session_state:
st.dataframe(st.session_state.sp_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.sp_freq.to_csv().encode('utf-8'),
file_name='cpt_freq.csv',
mime='text/csv',
key='sp'
)
with tab3:
if 'flex_freq' in st.session_state:
st.dataframe(st.session_state.flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.flex_freq.to_csv().encode('utf-8'),
file_name='flex_freq.csv',
mime='text/csv',
key='flex'
)
with tab4:
if 'team_freq' in st.session_state:
st.dataframe(st.session_state.team_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.team_freq.to_csv().encode('utf-8'),
file_name='team_freq.csv',
mime='text/csv',
key='team'
) |