File size: 29,096 Bytes
c398214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec97bef
c398214
 
 
 
 
 
 
 
ec97bef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c398214
ec97bef
 
c398214
d5cdf35
ec97bef
 
c398214
58e1c0d
c398214
b605e68
c398214
 
 
 
 
 
7c9d326
ec25780
 
 
 
 
7c9d326
 
ec25780
9e30fe1
 
 
7c9d326
 
 
 
 
 
 
 
 
9e30fe1
 
c398214
7c9d326
 
 
9e30fe1
 
c398214
 
 
 
 
9e30fe1
7c9d326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e30fe1
 
 
 
 
 
c398214
 
410c155
 
9e30fe1
 
7c9d326
 
9e30fe1
 
c398214
 
 
 
 
 
 
 
 
 
 
 
7c9d326
c398214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c9d326
c398214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd81fad
 
 
 
 
 
 
 
57ed052
 
 
 
c398214
 
 
 
 
 
 
 
 
 
 
 
 
 
dd81fad
 
 
 
 
 
 
 
 
 
 
 
c398214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c9d326
c398214
 
7c9d326
c398214
 
 
 
 
 
 
 
 
 
 
 
 
7c9d326
c398214
 
68e78da
c398214
d0976ab
dd81fad
 
ef20cbe
c398214
68e78da
 
 
 
 
 
 
c398214
ef20cbe
dd81fad
68e78da
 
 
 
 
 
c398214
 
d0976ab
ef20cbe
 
68e78da
 
 
 
 
 
 
68f92c7
68e78da
 
c398214
 
 
 
 
 
 
68e78da
c398214
 
 
 
 
 
 
 
68e78da
c398214
 
68e78da
 
 
 
 
 
c398214
 
 
 
 
 
 
 
 
 
 
 
 
7c9d326
c398214
 
 
 
 
 
 
 
 
 
 
7c9d326
c398214
 
7c9d326
c398214
 
 
 
 
 
7c9d326
c398214
 
 
 
410c155
c398214
 
7c9d326
 
c398214
 
 
7c9d326
c398214
 
 
 
 
410c155
c398214
 
7c9d326
 
c398214
 
 
7c9d326
c398214
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import streamlit as st
st.set_page_config(layout="wide")

for name in dir():
    if not name.startswith('_'):
        del globals()[name]

import numpy as np
import pandas as pd
import streamlit as st
import gspread
import gc

@st.cache_resource
def init_conn():
        scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']

        credentials = {
          "type": "service_account",
          "project_id": "model-sheets-connect",
          "private_key_id": st.secrets['model_sheets_connect_pk'],
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
          "client_email": "gspread-connection@model-sheets-connect.iam.gserviceaccount.com",
          "client_id": "100369174533302798535",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
        }
        
        credentials2 = {
          "type": "service_account",
          "project_id": "sheets-api-connect-378620",
          "private_key_id": st.secrets['sheets_api_connect_pk'],
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
          "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
          "client_id": "106625872877651920064",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
        }
     
        NHL_Data = st.secrets['NHL_Data']

        gc = gspread.service_account_from_dict(credentials)
        gc2 = gspread.service_account_from_dict(credentials2)

        return gc, gc2, NHL_Data
    
gcservice_account, gcservice_account2, NHL_Data = init_conn()

@st.cache_resource(ttl = 600)
def init_baselines():
    sh = gcservice_account.open_by_url(NHL_Data)
    
    worksheet = sh.worksheet('Gamelog')
    raw_display = pd.DataFrame(worksheet.get_values())
    raw_display.columns = raw_display.iloc[0]
    raw_display = raw_display[1:]
    raw_display = raw_display.reset_index(drop=True)
    gamelog_table = raw_display[raw_display['Player'] != ""]
    gamelog_table = gamelog_table[['Player', 'Team', 'Position', 'Date', 'TOI', 'Goals', 'TotalAssists', 'FirstAssists', 'SecondAssists', 'TotalPoints', 'IPP',
                                   'Shots', 'SH%', 'ixG', 'iCF', 'iFF', 'iSCF', 'iHDCF', 'RushAttempts', 'ReboundsCreated', 'PIM', 'TotalPenalties', 'Minor',
                                   'Major', 'PenaltiesDrawn', 'Giveaways', 'Takeaways', 'Hits', 'HitsTaken', 'ShotsBlocked', 'FaceoffsWon',
                                   'FaceoffsLost', 'Faceoffs%']]
    gamelog_table = gamelog_table.set_axis(['Player', 'Team', 'Position', 'Date', 'TOI', 'Goals', 'Total Assists', 'First Assists', 'Second Assists', 'Total Points', 'IPP',
                                   'Shots', 'SH%', 'ixG', 'iCF', 'iFF', 'iSCF', 'iHDCF', 'Rush Attempts', 'Rebounds Created', 'PIM', 'Total Penalties', 'Minor',
                                   'Major', 'Penalties Drawn', 'Giveaways', 'Takeaways', 'Hits', 'Hits Taken', 'Shots Blocked', 'Faceoffs Won',
                                   'Faceoffs Lost', 'Faceoffs %'], axis=1)
    data_cols = gamelog_table.columns.drop(['Player', 'Team', 'Position', 'Date'])
    gamelog_table[data_cols] = gamelog_table[data_cols].apply(pd.to_numeric, errors='coerce')
    gamelog_table['Date'] = pd.to_datetime(gamelog_table['Date']).dt.date
    gamelog_table['dk_shots_bonus'] = np.where((gamelog_table['Shots'] >= 5), 1, 0)
    gamelog_table['dk_blocks_bonus'] = np.where((gamelog_table['Shots Blocked'] >= 3), 1, 0)
    gamelog_table['dk_goals_bonus'] = np.where((gamelog_table['Goals'] >= 3), 1, 0)
    gamelog_table['dk_points_bonus'] = np.where((gamelog_table['Total Points'] >= 3), 1, 0)
    gamelog_table['dk_fantasy'] = sum([(gamelog_table['Goals'] * 8.5), (gamelog_table['Total Assists'] * 5), (gamelog_table['Shots'] * 1.5),
                                       (gamelog_table['Shots Blocked'] * 1.3), (gamelog_table['dk_shots_bonus'] * 3), (gamelog_table['dk_blocks_bonus'] * 3),
                                       (gamelog_table['dk_goals_bonus'] * 3), (gamelog_table['dk_points_bonus'] * 3)]).astype(float).round(2)
    gamelog_table['fd_fantasy'] = sum([(gamelog_table['Goals'] * 12), (gamelog_table['Total Assists'] * 8), (gamelog_table['Shots'] * 1.6),
                                       (gamelog_table['Shots Blocked'] * 1.6)]).astype(float).round(2)
    
    
    
    gamelog_table = gamelog_table.set_axis(['Player', 'Team', 'Position', 'Date', 'TOI', 'Goals', 'Total Assists', 'First Assists', 'Second Assists', 'Total Points', 'IPP',
                                            'Shots', 'Shots%', 'ixG', 'iCF', 'iFF', 'iSCF', 'iHDCF', 'Rush Attempts', 'Rebounds Created', 'PIM', 'Total Penalties', 'Minor',
                                            'Major', 'Penalties Drawn', 'Giveaways', 'Takeaways', 'Hits', 'Hits Taken', 'Shots Blocked', 'Faceoffs Won',
                                            'Faceoffs Lost', 'Faceoffs%', 'dk_shots_bonus', 'dk_blocks_bonus', 'dk_goals_bonus', 'dk_points_bonus',
                                            'dk_fantasy', 'fd_fantasy'], axis=1)
    
    return gamelog_table

@st.cache_data(show_spinner=False)
def seasonlong_build(data_sample):
    season_long_table = data_sample[['Player', 'Team', 'Position']]
    season_long_table['TOI'] = data_sample.groupby(['Player', 'Team'], sort=False)['TOI'].transform('mean').astype(float)
    season_long_table['Goals'] = data_sample.groupby(['Player', 'Team'], sort=False)['Goals'].transform('mean').astype(float)
    season_long_table['Total Assists'] = data_sample.groupby(['Player', 'Team'], sort=False)['Total Assists'].transform('mean').astype(float)
    season_long_table['First Assists'] = data_sample.groupby(['Player', 'Team'], sort=False)['First Assists'].transform('mean').astype(float)
    season_long_table['Second Assists'] = data_sample.groupby(['Player', 'Team'], sort=False)['Second Assists'].transform('mean').astype(float)
    season_long_table['Total Points'] = data_sample.groupby(['Player', 'Team'], sort=False)['Total Points'].transform('mean').astype(float)
    season_long_table['IPP'] = data_sample.groupby(['Player', 'Team'], sort=False)['IPP'].transform('mean').astype(float)
    season_long_table['Shots'] = data_sample.groupby(['Player', 'Team'], sort=False)['Shots'].transform('mean').astype(float)
    season_long_table['ixG'] = data_sample.groupby(['Player', 'Team'], sort=False)['ixG'].transform('mean').astype(float)
    season_long_table['iCF'] = data_sample.groupby(['Player', 'Team'], sort=False)['iCF'].transform('mean').astype(float)
    season_long_table['iFF'] = data_sample.groupby(['Player', 'Team'], sort=False)['iFF'].transform('mean').astype(float)
    season_long_table['iSCF'] = data_sample.groupby(['Player', 'Team'], sort=False)['iSCF'].transform('mean').astype(float)
    season_long_table['iHDCF'] = data_sample.groupby(['Player', 'Team'], sort=False)['iHDCF'].transform('mean').astype(float)
    season_long_table['Rush Attempts'] = data_sample.groupby(['Player', 'Team'], sort=False)['Rush Attempts'].transform('mean').astype(float)
    season_long_table['Rebounds Created'] = data_sample.groupby(['Player', 'Team'], sort=False)['Rebounds Created'].transform('mean').astype(float)
    season_long_table['PIM'] = data_sample.groupby(['Player', 'Team'], sort=False)['PIM'].transform('mean').astype(float)
    season_long_table['Total Penalties'] = data_sample.groupby(['Player', 'Team'], sort=False)['Total Penalties'].transform('mean').astype(float)
    season_long_table['Minor'] = data_sample.groupby(['Player', 'Team'], sort=False)['Minor'].transform('mean').astype(float)
    season_long_table['Major'] = data_sample.groupby(['Player', 'Team'], sort=False)['Major'].transform('mean').astype(float)
    season_long_table['Penalties Drawn'] = data_sample.groupby(['Player', 'Team'], sort=False)['Penalties Drawn'].transform('mean').astype(float)
    season_long_table['Giveaways'] = data_sample.groupby(['Player', 'Team'], sort=False)['Giveaways'].transform('mean').astype(float)
    season_long_table['Takeaways'] = data_sample.groupby(['Player', 'Team'], sort=False)['Takeaways'].transform('mean').astype(float)
    season_long_table['Hits'] = data_sample.groupby(['Player', 'Team'], sort=False)['Hits'].transform('mean').astype(float)
    season_long_table['Hits Taken'] = data_sample.groupby(['Player', 'Team'], sort=False)['Hits Taken'].transform('mean').astype(float)
    season_long_table['Shots Blocked'] = data_sample.groupby(['Player', 'Team'], sort=False)['Shots Blocked'].transform('mean').astype(float)
    season_long_table['Faceoffs Won'] = data_sample.groupby(['Player', 'Team'], sort=False)['Faceoffs Won'].transform('mean').astype(float)
    season_long_table['Faceoffs Lost'] = data_sample.groupby(['Player', 'Team'], sort=False)['Faceoffs Lost'].transform('mean').astype(float)
    season_long_table['dk_shots_bonus'] = data_sample.groupby(['Player', 'Team'], sort=False)['dk_shots_bonus'].transform('mean').astype(float)
    season_long_table['dk_blocks_bonus'] = data_sample.groupby(['Player', 'Team'], sort=False)['dk_blocks_bonus'].transform('mean').astype(float)
    season_long_table['dk_goals_bonus'] = data_sample.groupby(['Player', 'Team'], sort=False)['dk_goals_bonus'].transform('mean').astype(float)
    season_long_table['dk_points_bonus'] = data_sample.groupby(['Player', 'Team'], sort=False)['dk_points_bonus'].transform('mean').astype(float)
    season_long_table['dk_fantasy'] = data_sample.groupby(['Player', 'Team'], sort=False)['dk_fantasy'].transform('mean').astype(float)
    season_long_table['fd_fantasy'] = data_sample.groupby(['Player', 'Team'], sort=False)['fd_fantasy'].transform('mean').astype(float)
    season_long_table = season_long_table.drop_duplicates(subset='Player')
    
    season_long_table = season_long_table.sort_values(by='dk_fantasy', ascending=False)
    
    
    season_long_table = season_long_table.set_axis(['Player', 'Team', 'Position', 'TOI', 'Goals', 'Total Assists', 'First Assists', 'Second Assists', 'Total Points',
                                                    'IPP', 'Shots', 'ixG', 'iCF', 'iFF', 'iSCF', 'iHDCF', 'Rush Attempts', 'Rebounds Created', 'PIM', 'Total Penalties',
                                                    'Minor', 'Major', 'Penalties Drawn', 'Giveaways', 'Takeaways', 'Hits', 'Hits Taken', 'Shots Blocked', 'Faceoffs Won',
                                                    'Faceoffs Lost', 'dk_shots_bonus', 'dk_blocks_bonus', 'dk_goals_bonus', 'dk_points_bonus',
                                                    'dk_fantasy', 'fd_fantasy'], axis=1)

    return season_long_table

@st.cache_data(show_spinner=False)
def run_fantasy_corr(data_sample):
    cor_testing = data_sample
    date_list = cor_testing['Date'].unique().tolist()
    player_list = cor_testing['Player'].unique().tolist()
    corr_frame = pd.DataFrame()
    corr_frame['DATE'] = date_list
    for player in player_list:
        player_testing = cor_testing[cor_testing['Player'] == player]
        fantasy_map = dict(zip(player_testing['Date'], player_testing['dk_fantasy']))
        corr_frame[player] = corr_frame['DATE'].map(fantasy_map)
    players_fantasy = corr_frame.drop('DATE', axis=1)
    corrM = players_fantasy.corr()
    
    return corrM

@st.cache_data(show_spinner=False)
def run_min_corr(data_sample):
    cor_testing = data_sample
    date_list = cor_testing['Date'].unique().tolist()
    player_list = cor_testing['Player'].unique().tolist()
    corr_frame = pd.DataFrame()
    corr_frame['DATE'] = date_list
    for player in player_list:
        player_testing = cor_testing[cor_testing['Player'] == player]
        fantasy_map = dict(zip(player_testing['Date'], player_testing['TOI']))
        corr_frame[player] = corr_frame['DATE'].map(fantasy_map)
    players_fantasy = corr_frame.drop('DATE', axis=1)
    corrM = players_fantasy.corr()
    
    return corrM

@st.cache_data(show_spinner=False)
def split_frame(input_df, rows):
    df = [input_df.loc[i : i + rows - 1, :] for i in range(0, len(input_df), rows)]
    return df

def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

gamelog_table = init_baselines()
basic_cols = ['Player', 'Team', 'Position', 'Date', 'TOI']
basic_season_cols = ['Player', 'Team', 'Position', 'TOI']
data_cols = ['Goals', 'Total Assists', 'First Assists', 'Second Assists', 'Total Points', 'IPP',
             'Shots', 'Shots%', 'ixG', 'iCF', 'iFF', 'iSCF', 'iHDCF', 'Rush Attempts', 'Rebounds Created', 'PIM', 'Total Penalties', 'Minor',
             'Major', 'Penalties Drawn', 'Giveaways', 'Takeaways', 'Hits', 'Hits Taken', 'Shots Blocked', 'Faceoffs Won',
             'Faceoffs Lost', 'Faceoffs%', 'dk_shots_bonus', 'dk_blocks_bonus', 'dk_goals_bonus', 'dk_points_bonus',
             'dk_fantasy', 'fd_fantasy']
season_data_cols = ['Goals', 'Total Assists', 'First Assists', 'Second Assists', 'Total Points',
                    'IPP', 'Shots', 'ixG', 'iCF', 'iFF', 'iSCF', 'iHDCF', 'Rush Attempts', 'Rebounds Created', 'PIM', 'Total Penalties',
                    'Minor', 'Major', 'Penalties Drawn', 'Giveaways', 'Takeaways', 'Hits', 'Hits Taken', 'Shots Blocked', 'Faceoffs Won',
                    'Faceoffs Lost', 'dk_shots_bonus', 'dk_blocks_bonus', 'dk_goals_bonus', 'dk_points_bonus',
                    'dk_fantasy', 'fd_fantasy']
indv_teams = gamelog_table.drop_duplicates(subset='Team')
total_teams = indv_teams.Team.values.tolist()
indv_players = gamelog_table.drop_duplicates(subset='Player')
total_players = indv_players.Player.values.tolist()
total_dates = gamelog_table.Date.values.tolist()

tab1, tab2 = st.tabs(['Gamelogs', 'Correlation Matrix'])

with tab1:
    col1, col2 = st.columns([1, 9])
    with col1:
        if st.button("Reset Data", key='reset1'):
                  st.cache_data.clear()
                  gamelog_table = init_baselines()
                  basic_cols = ['Player', 'Team', 'Position', 'Date', 'TOI']
                  basic_season_cols = ['Player', 'Team', 'Position', 'TOI']
                  data_cols = ['Goals', 'Total Assists', 'First Assists', 'Second Assists', 'Total Points', 'IPP',
                               'Shots', 'Shots%', 'ixG', 'iCF', 'iFF', 'iSCF', 'iHDCF', 'Rush Attempts', 'Rebounds Created', 'PIM', 'Total Penalties', 'Minor',
                               'Major', 'Penalties Drawn', 'Giveaways', 'Takeaways', 'Hits', 'Hits Taken', 'Shots Blocked', 'Faceoffs Won',
                               'Faceoffs Lost', 'Faceoffs%', 'dk_shots_bonus', 'dk_blocks_bonus', 'dk_goals_bonus', 'dk_points_bonus',
                               'dk_fantasy', 'fd_fantasy']
                  season_data_cols = ['Goals', 'Total Assists', 'First Assists', 'Second Assists', 'Total Points',
                                      'IPP', 'Shots', 'ixG', 'iCF', 'iFF', 'iSCF', 'iHDCF', 'Rush Attempts', 'Rebounds Created', 'PIM', 'Total Penalties',
                                      'Minor', 'Major', 'Penalties Drawn', 'Giveaways', 'Takeaways', 'Hits', 'Hits Taken', 'Shots Blocked', 'Faceoffs Won',
                                      'Faceoffs Lost', 'dk_shots_bonus', 'dk_blocks_bonus', 'dk_goals_bonus', 'dk_points_bonus',
                                      'dk_fantasy', 'fd_fantasy']
                  indv_teams = gamelog_table.drop_duplicates(subset='Team')
                  total_teams = indv_teams.Team.values.tolist()
                  indv_players = gamelog_table.drop_duplicates(subset='Player')
                  total_players = indv_players.Player.values.tolist()
                  total_dates = gamelog_table.Date.values.tolist()
        
        split_var1 = st.radio("What table would you like to view?", ('Season Logs', 'Gamelogs'), key='split_var1')
        split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
        
        if split_var2 == 'Specific Teams':
            team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = total_teams, key='team_var1')
        elif split_var2 == 'All':
            team_var1 = total_teams
            
        split_var3 = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='split_var3')
        
        if split_var3 == 'Specific Dates':
            low_date = st.date_input('Min Date:', value=None, format="MM/DD/YYYY", key='low_date')
            if low_date is not None:
                low_date = pd.to_datetime(low_date).date()
            high_date = st.date_input('Max Date:', value=None, format="MM/DD/YYYY", key='high_date')
            if high_date is not None:
                high_date = pd.to_datetime(high_date).date()
        elif split_var3 == 'All':
            low_date = gamelog_table['Date'].min()
            high_date = gamelog_table['Date'].max()
        
        split_var4 = st.radio("Would you like to view all players or specific ones?", ('All', 'Specific Players'), key='split_var4')
        
        if split_var4 == 'Specific Players':
            player_var1 = st.multiselect('Which players would you like to include in the tables?', options = total_players, key='player_var1')
        elif split_var4 == 'All':
            player_var1 = total_players
        
        min_var1 = st.slider("Is there a certain TOI range you want to view?", 0, 50, (0, 50), key='min_var1')
    
    with col2:
        working_data = gamelog_table
        if split_var1 == 'Season Logs':
            choose_cols = st.container()
            with choose_cols:
                choose_disp = st.multiselect('Which stats would you like to view?', options = season_data_cols, default = season_data_cols, key='col_display')
            disp_stats = basic_season_cols + choose_disp
            display = st.container()
            working_data = working_data[working_data['Date'] >= low_date]
            working_data = working_data[working_data['Date'] <= high_date]
            working_data = working_data[working_data['TOI'] >= min_var1[0]]
            working_data = working_data[working_data['TOI'] <= min_var1[1]]
            working_data = working_data[working_data['Team'].isin(team_var1)]
            working_data = working_data[working_data['Player'].isin(player_var1)]
            season_long_table = seasonlong_build(working_data)
            season_long_table = season_long_table.set_index('Player')
            season_long_table_disp = season_long_table.reindex(disp_stats,axis="columns")
            display.dataframe(season_long_table_disp.style.format(precision=2), height=750, use_container_width = True)  
            st.download_button(
                    label="Export seasonlogs Model",
                    data=convert_df_to_csv(season_long_table),
                    file_name='Seasonlogs_NHL_View.csv',
                    mime='text/csv',
            )
            
        elif split_var1 == 'Gamelogs':
            choose_cols = st.container()
            with choose_cols:
                choose_disp = st.multiselect('Which stats would you like to view?', options = data_cols, default = data_cols, key='col_display')
            gamelog_disp_stats = basic_cols + choose_disp
            working_data = working_data[working_data['Date'] >= low_date]
            working_data = working_data[working_data['Date'] <= high_date]
            working_data = working_data[working_data['TOI'] >= min_var1[0]]
            working_data = working_data[working_data['TOI'] <= min_var1[1]]
            working_data = working_data[working_data['Team'].isin(team_var1)]
            working_data = working_data[working_data['Player'].isin(player_var1)]
            working_data = working_data.sort_values(by='Date', ascending=False)
            working_data = working_data.reset_index(drop=True)
            gamelog_data = working_data.reindex(gamelog_disp_stats,axis="columns")
            display = st.container()
        
            bottom_menu = st.columns((4, 1, 1))
            with bottom_menu[2]:
                batch_size = st.selectbox("Page Size", options=[25, 50, 100])
            with bottom_menu[1]:
                total_pages = (
                    int(len(gamelog_data) / batch_size) if int(len(gamelog_data) / batch_size) > 0 else 1
                )
                current_page = st.number_input(
                    "Page", min_value=1, max_value=total_pages, step=1
                )
            with bottom_menu[0]:
                st.markdown(f"Page **{current_page}** of **{total_pages}** ")
            
            
            pages = split_frame(gamelog_data, batch_size)
            # pages = pages.set_index('Player')
            display.dataframe(data=pages[current_page - 1].style.format(precision=2), height=500, use_container_width=True)
            st.download_button(
                    label="Export gamelogs Model",
                    data=convert_df_to_csv(gamelog_data),
                    file_name='Gamelogs_NBA_View.csv',
                    mime='text/csv',
            )
            
with tab2:
    col1, col2 = st.columns([1, 9])
    with col1:
        if st.button("Reset Data", key='reset2'):
                  st.cache_data.clear()
                  gamelog_table = init_baselines()
                  indv_teams = gamelog_table.drop_duplicates(subset='Team')
                  total_teams = indv_teams.Team.values.tolist()
                  indv_players = gamelog_table.drop_duplicates(subset='Player')
                  total_players = indv_players.Player.values.tolist()
                  total_dates = gamelog_table.Date.values.tolist()
        
        corr_var = st.radio("Are you correlating fantasy or TOI?", ('Fantasy', 'TOI'), key='corr_var')
        
        split_var1_t2 = st.radio("Would you like to view specific teams or specific players?", ('Specific Teams', 'Specific Players'), key='split_var1_t2')
        
        if split_var1_t2 == 'Specific Teams':
            corr_var1_t2 = st.multiselect('Which teams would you like to include in the correlation?', options = total_teams, key='corr_var1_t2')
        elif split_var1_t2 == 'Specific Players':
            corr_var1_t2 = st.multiselect('Which players would you like to include in the correlation?', options = total_players, key='corr_var1_t2')
            
        split_var2_t2 = st.radio("Would you like to view all dates or specific ones?", ('All', 'Specific Dates'), key='split_var3_t2')
        
        if split_var2_t2 == 'Specific Dates':
            low_date_t2 = st.date_input('Min Date:', value=None, format="MM/DD/YYYY", key='low_date_t2')
            if low_date_t2 is not None:
                low_date_t2 = pd.to_datetime(low_date_t2).date()
            high_date_t2 = st.date_input('Max Date:', value=None, format="MM/DD/YYYY", key='high_date_t2')
            if high_date_t2 is not None:
                high_date_t2 = pd.to_datetime(high_date_t2).date()
        elif split_var2_t2 == 'All':
            low_date_t2 = gamelog_table['Date'].min()
            high_date_t2 = gamelog_table['Date'].max()
        
        min_var1_t2 = st.slider("Is there a certain minutes range you want to view?", 0, 50, (0, 50), key='min_var1_t2')
    
    with col2:
        if split_var1_t2 == 'Specific Teams':
            display = st.container()
            gamelog_table = gamelog_table.sort_values(by='dk_fantasy', ascending=False)
            gamelog_table = gamelog_table[gamelog_table['Date'] >= low_date_t2]
            gamelog_table = gamelog_table[gamelog_table['Date'] <= high_date_t2]
            gamelog_table = gamelog_table[gamelog_table['TOI'] >= min_var1_t2[0]]
            gamelog_table = gamelog_table[gamelog_table['TOI'] <= min_var1_t2[1]]
            gamelog_table = gamelog_table[gamelog_table['Team'].isin(corr_var1_t2)]
            if corr_var == 'Fantasy':
                corr_display = run_fantasy_corr(gamelog_table)
            elif corr_var == 'TOI':
                corr_display = run_min_corr(gamelog_table)
            display.dataframe(corr_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=1000, use_container_width = True)
            
        elif split_var1_t2 == 'Specific Players':
            display = st.container()
            gamelog_table = gamelog_table.sort_values(by='dk_fantasy', ascending=False)
            gamelog_table = gamelog_table[gamelog_table['Date'] >= low_date_t2]
            gamelog_table = gamelog_table[gamelog_table['Date'] <= high_date_t2]
            gamelog_table = gamelog_table[gamelog_table['TOI'] >= min_var1_t2[0]]
            gamelog_table = gamelog_table[gamelog_table['TOI'] <= min_var1_t2[1]]
            gamelog_table = gamelog_table[gamelog_table['Player'].isin(corr_var1_t2)]
            if corr_var == 'Fantasy':
                corr_display = run_fantasy_corr(gamelog_table)
            elif corr_var == 'TOI':
                corr_display = run_min_corr(gamelog_table)
            display.dataframe(corr_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)