Spaces:
Running
Running
File size: 11,974 Bytes
995f524 84bb751 1679146 84bb751 995f524 88eb52f 995f524 6417509 995f524 6417509 995f524 6417509 995f524 6417509 995f524 6417509 995f524 f1e043a 995f524 a027402 ee14527 56aba80 a027402 ee14527 f1e043a ee14527 88aa4bf 995f524 88aa4bf 995f524 88aa4bf 995f524 c6144e0 ead9687 5579016 ead9687 88aa4bf 88eb52f f1aa9c2 88eb52f ead9687 88eb52f f1e043a ee14527 f1aa9c2 88eb52f 84bb751 ead9687 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import streamlit as st
st.set_page_config(layout="wide")
for name in dir():
if not name.startswith('_'):
del globals()[name]
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import gc
@st.cache_resource
def init_conn():
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
credentials = {
"type": "service_account",
"project_id": "model-sheets-connect",
"private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@model-sheets-connect.iam.gserviceaccount.com",
"client_id": "100369174533302798535",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
}
gc_con = gspread.service_account_from_dict(credentials, scope)
return gc_con
gcservice_account = init_conn()
DEM_data = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=1808117109'
percentages_format = {'Pts% Boost': '{:.2%}', 'Reb% Boost': '{:.2%}', 'Ast% Boost': '{:.2%}', '3p% Boost': '{:.2%}',
'Stl Boost%': '{:.2%}', 'Blk Boost%': '{:.2%}', 'TOV Boost%': '{:.2%}', 'FPPM Boost': '{:.2%}',
'Team FPPM Boost': '{:.2%}'}
@st.cache_resource(ttl = 600)
def init_baselines():
sh = gcservice_account.open_by_url(DEM_data)
worksheet = sh.worksheet('DEM Matchups')
raw_display = pd.DataFrame(worksheet.get_values())
raw_display.columns = raw_display.iloc[0]
raw_display = raw_display[1:]
raw_display = raw_display.reset_index(drop=True)
matchups = raw_display[raw_display['Var'] != ""]
matchups_dict = dict(zip(matchups['Team'], matchups['Opp']))
worksheet = sh.worksheet('PG_DEM_Calc')
raw_display = pd.DataFrame(worksheet.get_values())
raw_display.columns = raw_display.iloc[0]
raw_display = raw_display[1:]
raw_display = raw_display.reset_index(drop=True)
cols_to_check = ['Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost', 'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM Boost']
raw_display.loc[:, cols_to_check] = raw_display.loc[:, cols_to_check].replace({'%': ''}, regex=True).astype(float) / 100
raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
raw_display['position'] = 'Point Guard'
pg_dem = raw_display[raw_display['Acro'] != ""]
worksheet = sh.worksheet('SG_DEM_Calc')
raw_display = pd.DataFrame(worksheet.get_values())
raw_display.columns = raw_display.iloc[0]
raw_display = raw_display[1:]
raw_display = raw_display.reset_index(drop=True)
cols_to_check = ['Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost', 'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM Boost']
raw_display.loc[:, cols_to_check] = raw_display.loc[:, cols_to_check].replace({'%': ''}, regex=True).astype(float) / 100
raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
raw_display['position'] = 'Shooting Guard'
sg_dem = raw_display[raw_display['Acro'] != ""]
worksheet = sh.worksheet('SF_DEM_Calc')
raw_display = pd.DataFrame(worksheet.get_values())
raw_display.columns = raw_display.iloc[0]
raw_display = raw_display[1:]
raw_display = raw_display.reset_index(drop=True)
cols_to_check = ['Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost', 'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM Boost']
raw_display.loc[:, cols_to_check] = raw_display.loc[:, cols_to_check].replace({'%': ''}, regex=True).astype(float) / 100
raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
raw_display['position'] = 'Small Forward'
sf_dem = raw_display[raw_display['Acro'] != ""]
worksheet = sh.worksheet('PF_DEM_Calc')
raw_display = pd.DataFrame(worksheet.get_values())
raw_display.columns = raw_display.iloc[0]
raw_display = raw_display[1:]
raw_display = raw_display.reset_index(drop=True)
cols_to_check = ['Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost', 'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM Boost']
raw_display.loc[:, cols_to_check] = raw_display.loc[:, cols_to_check].replace({'%': ''}, regex=True).astype(float) / 100
raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
raw_display['position'] = 'Power Forward'
pf_dem = raw_display[raw_display['Acro'] != ""]
worksheet = sh.worksheet('C_DEM_Calc')
raw_display = pd.DataFrame(worksheet.get_values())
raw_display.columns = raw_display.iloc[0]
raw_display = raw_display[1:]
raw_display = raw_display.reset_index(drop=True)
cols_to_check = ['Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost', 'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM Boost']
raw_display.loc[:, cols_to_check] = raw_display.loc[:, cols_to_check].replace({'%': ''}, regex=True).astype(float) / 100
raw_display = raw_display.apply(pd.to_numeric, errors='coerce').fillna(raw_display)
raw_display['position'] = 'Center'
c_dem = raw_display[raw_display['Acro'] != ""]
overall_dem = pd.concat([pg_dem, sg_dem, sf_dem, pf_dem, c_dem])
overall_dem = overall_dem[['Acro', 'G', 'Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost',
'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM', 'FPPM Boost', 'position']]
overall_dem['Team'] = overall_dem['Acro'] + '-' + overall_dem['position']
overall_dem['Team FPPM Boost'] = overall_dem.groupby('Acro', sort=False)['FPPM Boost'].transform('mean')
overall_dem = overall_dem.reset_index()
export_dem = overall_dem[['Team', 'Acro', 'G', 'Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost',
'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM', 'FPPM Boost', 'Team FPPM Boost', 'position']]
worksheet = sh.worksheet('DEM Matchups')
timestamp = worksheet.acell('F1').value
return export_dem, matchups, matchups_dict, timestamp
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
overall_dem, matchups, matchups_dict, timestamp = init_baselines()
t_stamp = f"Updated through: " + str(timestamp) + f" CST"
col1, col2 = st.columns([1, 9])
with col1:
st.info(t_stamp)
if st.button("Reset Data", key='reset1'):
st.cache_data.clear()
overall_dem, matchups, matchups_dict, t_stamp = init_baselines()
split_var1 = st.radio("View all teams or just this main slate's matchups?", ('Slate Matchups', 'All'), key='split_var1')
if split_var1 == 'Slate Matchups':
view_var1 = matchups.Opp.values.tolist()
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
if split_var2 == 'Specific Teams':
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = view_var1, key='team_var1')
elif split_var2 == 'All':
team_var1 = view_var1
split_var3 = st.radio("Would you like to view all positions or specific ones?", ('All', 'Specific Positions'), key='split_var3')
if split_var3 == 'Specific Positions':
pos_var1 = st.multiselect('Which teams would you like to include in the tables?', options = overall_dem['position'].unique(), key='pos_var1')
elif split_var3 == 'All':
pos_var1 = overall_dem.position.values.tolist()
if split_var1 == 'All':
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
if split_var2 == 'Specific Teams':
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = overall_dem['Acro'].unique(), key='team_var1')
elif split_var2 == 'All':
team_var1 = overall_dem.Acro.values.tolist()
split_var3 = st.radio("Would you like to view all positions or specific ones?", ('All', 'Specific Positions'), key='split_var3')
if split_var3 == 'Specific Positions':
pos_var1 = st.multiselect('Which teams would you like to include in the tables?', options = overall_dem['position'].unique(), key='pos_var1')
elif split_var3 == 'All':
pos_var1 = overall_dem.position.values.tolist()
with col2:
if split_var1 == 'Slate Matchups':
dem_display = overall_dem[overall_dem['Acro'].isin(view_var1)]
dem_display['Team (Getting Boost)'] = dem_display['Acro'].map(matchups_dict)
dem_display.rename(columns={"Acro": "Opp (Giving Boost)"}, inplace = True)
dem_display = dem_display[['Team (Getting Boost)', 'Opp (Giving Boost)', 'G', 'Pts% Boost', 'Reb% Boost', 'Ast% Boost', '3p% Boost',
'Stl Boost%', 'Blk Boost%', 'TOV Boost%', 'FPPM', 'FPPM Boost', 'Team FPPM Boost', 'position']]
dem_display = dem_display[dem_display['Team (Getting Boost)'].isin(team_var1)]
dem_display = dem_display[dem_display['position'].isin(pos_var1)]
dem_display = dem_display.sort_values(by='FPPM Boost', ascending=False)
elif split_var1 == 'All':
dem_display = overall_dem[overall_dem['Acro'].isin(team_var1)]
dem_display = dem_display[dem_display['position'].isin(pos_var1)]
dem_display = dem_display.sort_values(by='FPPM Boost', ascending=False)
dem_display.rename(columns={"Team": "Team (Giving Boost)"}, inplace = True)
dem_display = dem_display.set_index('Team (Giving Boost)')
st.dataframe(dem_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
st.download_button(
label="Export DEM Numbers",
data=convert_df_to_csv(overall_dem),
file_name='DEM_export.csv',
mime='text/csv',
)
|