File size: 32,863 Bytes
0fb1f15
4b6fd19
 
0fb1f15
 
92f395c
0fb1f15
 
 
 
 
6c387a5
 
 
 
0fb1f15
5e3911e
0fb1f15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ada64ff
0fb1f15
 
 
ada64ff
 
0fb1f15
 
 
 
 
 
 
 
 
ada64ff
 
0fb1f15
 
 
 
ada64ff
0fb1f15
 
 
ada64ff
 
 
 
 
 
0fb1f15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92f395c
 
 
 
 
 
 
 
 
 
0fb1f15
92f395c
 
 
 
 
0fb1f15
 
 
 
92f395c
 
 
 
 
 
 
 
 
 
 
 
 
 
0fb1f15
 
33e0f9f
2e7e942
33e0f9f
2e7e942
0fb1f15
 
f02bae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fb1f15
 
 
 
33e0f9f
2e7e942
33e0f9f
2e7e942
0fb1f15
 
 
 
 
 
 
f02bae9
 
 
 
 
 
 
 
1e7a422
 
 
 
 
 
 
0fb1f15
1e7a422
 
 
 
 
2e7e942
1e7a422
 
 
 
 
 
2e7e942
1e7a422
 
 
0fb1f15
1e7a422
0fb1f15
 
 
 
 
 
 
 
 
 
 
 
 
f02bae9
0fb1f15
 
 
 
33e0f9f
2e7e942
33e0f9f
2e7e942
0fb1f15
 
 
 
 
 
 
ada64ff
f02bae9
70970a2
0fb1f15
f02bae9
70970a2
f02bae9
 
70970a2
f02bae9
0fb1f15
f02bae9
70970a2
f02bae9
 
70970a2
f02bae9
70970a2
0fb1f15
70970a2
0fb1f15
70970a2
0fb1f15
f02bae9
70970a2
 
 
 
 
 
 
 
 
 
f02bae9
70970a2
 
 
 
 
 
 
 
 
f02bae9
70970a2
 
f02bae9
0fb1f15
 
 
 
 
273bc13
f02bae9
 
273bc13
 
f02bae9
273bc13
 
0fb1f15
92f395c
 
 
 
 
f02bae9
92f395c
 
 
9a655f5
f02bae9
92f395c
 
 
9a655f5
92f395c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f02bae9
92f395c
 
 
9a655f5
f02bae9
92f395c
 
 
9a655f5
92f395c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fb1f15
f02bae9
0fb1f15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f02bae9
0fb1f15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f02bae9
0fb1f15
f02bae9
0fb1f15
273bc13
 
0fb1f15
 
 
 
 
92f395c
0fb1f15
 
 
 
 
 
f02bae9
0fb1f15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f02bae9
0fb1f15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b6fd19
0fb1f15
 
 
 
f02bae9
0fb1f15
f02bae9
0fb1f15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f02bae9
0fb1f15
f02bae9
0fb1f15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
import streamlit as st
import numpy as np
import pandas as pd
import pymongo
import os
import unicodedata

st.set_page_config(layout="wide")

@st.cache_resource
def init_conn():
         # Try to get from environment variable first, fall back to secrets
        uri = os.getenv('MONGO_URI')
        if not uri:
            uri = st.secrets['mongo_uri']
        client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
        db = client["PGA_Database"]

        return db
    
db = init_conn()

dk_player_url = 'https://docs.google.com/spreadsheets/d/1lMLxWdvCnOFBtG9dhM0zv2USuxZbkogI_2jnxFfQVVs/edit#gid=1828092624'
CSV_URL = 'https://docs.google.com/spreadsheets/d/1lMLxWdvCnOFBtG9dhM0zv2USuxZbkogI_2jnxFfQVVs/edit#gid=1828092624'

player_roo_format = {'Cut_Odds': '{:.2%}', 'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '100+%': '{:.2%}', '5x%': '{:.2%}', '6x%': '{:.2%}', '7x%': '{:.2%}', '10x%': '{:.2%}', '11x%': '{:.2%}',
                   '12x%': '{:.2%}','LevX': '{:.2%}'}
dk_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6', 'salary', 'proj', 'Own']
fd_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6', 'salary', 'proj', 'Own']

st.markdown("""
<style>
    /* Tab styling */
    .stElementContainer [data-baseweb="button-group"] {
        gap: 8px;
        padding: 4px;
    }
    .stElementContainer [kind="segmented_control"] {
        height: 45px;
        white-space: pre-wrap;
        background-color: #DAA520;
        color: white;
        border-radius: 10px;
        gap: 1px;
        padding: 10px 20px;
        font-weight: bold;
        transition: all 0.3s ease;
    }
    .stElementContainer [kind="segmented_controlActive"] {
        height: 50px;
        background-color: #DAA520;
        border: 3px solid #FFD700;
        color: white;
    }
    .stElementContainer [kind="segmented_control"]:hover {
        background-color: #FFD700;
        cursor: pointer;
    }

    div[data-baseweb="select"] > div {
        background-color: #DAA520;
        color: white;
    }

</style>""", unsafe_allow_html=True)

@st.cache_resource(ttl = 60)
def init_baselines():

    collection = db["PGA_Placement_Rates"] 
    cursor = collection.find()
    placement_frame = pd.DataFrame(cursor)

    collection = db["PGA_Range_of_Outcomes"] 
    cursor = collection.find()
    player_frame = pd.DataFrame(cursor)

    player_frame['Cut_Odds'] = player_frame['Player'].map(placement_frame.set_index('Player')['Cut_Odds'])
    player_frame = player_frame[['Player', 'Cut_Odds'] + [col for col in player_frame.columns if col not in ['Player', 'Cut_Odds']]]
    
    timestamp = player_frame['Timestamp'][0]

    roo_data = player_frame.drop(columns=['_id', 'index', 'Timestamp'])
    roo_data['Salary'] = roo_data['Salary'].astype(int)

    collection = db["PGA_SD_ROO"] 
    cursor = collection.find()
    player_frame = pd.DataFrame(cursor)

    sd_roo_data = player_frame.drop(columns=['_id', 'index'])
    sd_roo_data['Salary'] = sd_roo_data['Salary'].astype(int)

    sd_roo_data = player_frame.drop(columns=['_id', 'index'])
    sd_roo_data['Salary'] = sd_roo_data['Salary'].astype(int)
    
    return roo_data, sd_roo_data, timestamp

@st.cache_data(ttl = 60)
def init_DK_lineups(type):  
        
        if type == 'Regular':
            collection = db['PGA_DK_Seed_Frame_Name_Map']
        elif type == 'Showdown':
            collection = db['PGA_DK_SD_Seed_Frame_Name_Map']
        cursor = collection.find()
        raw_data = pd.DataFrame(list(cursor))
        names_dict = dict(zip(raw_data['key'], raw_data['value']))
        
        if type == 'Regular':
            collection = db["PGA_DK_Seed_Frame"] 
        elif type == 'Showdown':
            collection = db["PGA_DK_SD_Seed_Frame"]
        cursor = collection.find().limit(10000)
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6', 'salary', 'proj', 'Own']]
        dict_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6']
        for col in dict_columns:
            raw_display[col] = raw_display[col].map(names_dict)
        DK_seed = raw_display.to_numpy()

        return DK_seed

@st.cache_data(ttl = 60)
def init_FD_lineups(type):  
        
        if type == 'Regular':
            collection = db['PGA_FD_Seed_Frame_Name_Map']
        elif type == 'Showdown':
            collection = db['PGA_DK_SD_Seed_Frame_Name_Map']
        cursor = collection.find()
        raw_data = pd.DataFrame(list(cursor))
        names_dict = dict(zip(raw_data['key'], raw_data['value']))
        
        if type == 'Regular':
            collection = db["PGA_FD_Seed_Frame"] 
        elif type == 'Showdown':
            collection = db["PGA_DK_SD_Seed_Frame"]
        cursor = collection.find().limit(10000)
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6', 'salary', 'proj', 'Own']]
        dict_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6']
        for col in dict_columns:
            raw_display[col] = raw_display[col].map(names_dict)
        FD_seed = raw_display.to_numpy()

        return FD_seed

def normalize_special_characters(text):
    """Convert accented characters to their ASCII equivalents"""
    if pd.isna(text):
        return text
    # Normalize unicode characters to their closest ASCII equivalents
    normalized = unicodedata.normalize('NFKD', str(text))
    # Remove diacritics (accents, umlauts, etc.)
    ascii_text = ''.join(c for c in normalized if not unicodedata.combining(c))
    return ascii_text

def convert_df_to_csv(df):
    df_clean = df.copy()
    for col in df_clean.columns:
        if df_clean[col].dtype == 'object':
            df_clean[col] = df_clean[col].apply(normalize_special_characters)
    return df_clean.to_csv(index=False).encode('utf-8')

@st.cache_data
def convert_df(array):
    array = pd.DataFrame(array, columns=column_names)
    # Normalize special characters in the dataframe before export
    for col in array.columns:
        if array[col].dtype == 'object':
            array[col] = array[col].apply(normalize_special_characters)
    return array.to_csv(index=False).encode('utf-8')

@st.cache_data
def convert_pm_df(array):
    array = pd.DataFrame(array)
    # Normalize special characters in the dataframe before export
    for col in array.columns:
        if array[col].dtype == 'object':
            array[col] = array[col].apply(normalize_special_characters)
    return array.to_csv(index=False).encode('utf-8')

roo_data, sd_roo_data, timestamp = init_baselines()
dk_id_dict = dict(zip(roo_data[roo_data['Site'] == 'Draftkings']['Player'], roo_data[roo_data['Site'] == 'Draftkings']['player_id']))
dk_id_dict_sd = dict(zip(sd_roo_data['Player'], sd_roo_data['player_id']))
fd_id_dict = dict(zip(roo_data[roo_data['Site'] == 'Fanduel']['Player'], roo_data[roo_data['Site'] == 'Fanduel']['player_id']))
fd_id_dict_sd = dk_id_dict_sd
hold_display = roo_data

app_load_reset_column, app_view_site_column = st.columns([1, 9])
with app_load_reset_column:
    if st.button("Load/Reset Data", key='reset_data_button'):
        st.cache_data.clear()
        roo_data, sd_roo_data, timestamp = init_baselines()
        dk_id_dict = dict(zip(roo_data[roo_data['Site'] == 'Draftkings']['Player'], roo_data[roo_data['Site'] == 'Draftkings']['player_id']))
        dk_id_dict_sd = dict(zip(sd_roo_data['Player'], sd_roo_data['player_id']))
        fd_id_dict = dict(zip(roo_data[roo_data['Site'] == 'Fanduel']['Player'], roo_data[roo_data['Site'] == 'Fanduel']['player_id']))
        fd_id_dict_sd = dk_id_dict_sd
        dk_lineups = init_DK_lineups('Regular')
        fd_lineups = init_FD_lineups('Regular')
        hold_display = roo_data
        for key in st.session_state.keys():
            del st.session_state[key]
with app_view_site_column:
    with st.container():
        app_view_column, app_site_column = st.columns([3, 3])
        with app_view_column:
            view_var = st.selectbox("Select view", ["Simple", "Advanced"], key='view_selectbox')
        with app_site_column:
            site_var = st.selectbox("What site do you want to view?", ('Draftkings', 'Fanduel'), key='site_selectbox')

selected_tab = st.segmented_control(
    "Select Tab",
    options=["Player ROO", "Optimals"],
    selection_mode='single',
    default='Player ROO',
    width='stretch',
    label_visibility='collapsed',
    key='tab_selector'
)

if selected_tab == "Player ROO":
    with st.expander("Info and Filters"):
        if st.button("Reset Data", key='reset1'):
                st.cache_data.clear()
                roo_data, sd_roo_data, timestamp = init_baselines()
                dk_id_dict = dict(zip(roo_data[roo_data['Site'] == 'Draftkings']['Player'], roo_data[roo_data['Site'] == 'Draftkings']['player_id']))
                dk_id_dict_sd = dict(zip(sd_roo_data['Player'], sd_roo_data['player_id']))
                fd_id_dict = dict(zip(roo_data[roo_data['Site'] == 'Fanduel']['Player'], roo_data[roo_data['Site'] == 'Fanduel']['player_id']))
                fd_id_dict_sd = dk_id_dict_sd
                dk_lineups = init_DK_lineups('Regular')
                fd_lineups = init_FD_lineups('Regular')
                hold_display = roo_data
                for key in st.session_state.keys():
                    del st.session_state[key]

        st.write(timestamp)
        
        type_var = st.radio("Select a Type", ["Full Slate", "Showdown"])
        if type_var == "Full Slate":
            display = hold_display[hold_display['Site'] == site_var]
            display = display.drop_duplicates(subset=['Player'])
        elif type_var == "Showdown":
            display = sd_roo_data
            display = display.drop_duplicates(subset=['Player'])
    
    export_data = display.copy()
    export_data_pm = display[['Player', 'Salary', 'Median', 'Own']]
    export_data_pm['Position'] = 'G'
    export_data_pm['Team'] = 'Golf'
    export_data_pm['captain ownership'] = ''
    export_data_pm = export_data_pm.rename(columns={'Own': 'ownership', 'Median': 'median', 'Player': 'player_names', 'Position': 'position', 'Team': 'team', 'Salary': 'salary'})
    
    reg_dl_col, pm_dl_col, blank_col = st.columns([2, 2, 6])
    with reg_dl_col:
        st.download_button(
                    label="Export ROO (Regular)",
                    data=convert_df_to_csv(export_data),
                    file_name='PGA_ROO_export.csv',
                    mime='text/csv',
        )
    with pm_dl_col:
        st.download_button(
                    label="Export ROO (Portfolio Manager)",
                    data=convert_df_to_csv(export_data_pm),
                    file_name='PGA_ROO_export.csv',
                    mime='text/csv',
        )

    with st.container():
        
        if view_var == "Simple":
            if type_var == "Full Slate":
                display = display[['Player', 'Cut_Odds', 'Salary', 'Median', '10x%', 'Own']]
                display = display.set_index('Player')
            elif type_var == "Showdown":
                display = display[['Player', 'Salary', 'Median', '5x%', 'Own']]
                display = display.set_index('Player')
            st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True)
        elif view_var == "Advanced":
            display = display
            display = display.set_index('Player')
            st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True)

if selected_tab == "Optimals":
    with st.expander("Info and Filters"):
        if st.button("Load/Reset Data", key='reset2'):
            st.cache_data.clear()
            roo_data, sd_roo_data, timestamp = init_baselines()
            dk_id_dict = dict(zip(roo_data[roo_data['Site'] == 'Draftkings']['Player'], roo_data[roo_data['Site'] == 'Draftkings']['player_id']))
            dk_id_dict_sd = dict(zip(sd_roo_data['Player'], sd_roo_data['player_id']))
            fd_id_dict = dict(zip(roo_data[roo_data['Site'] == 'Fanduel']['Player'], roo_data[roo_data['Site'] == 'Fanduel']['player_id']))
            fd_id_dict_sd = dk_id_dict_sd
            hold_display = roo_data
            dk_lineups = init_DK_lineups('Regular')
            fd_lineups = init_FD_lineups('Regular')
            t_stamp = f"Last Update: " + str(timestamp) + f" CST"
            for key in st.session_state.keys():
                del st.session_state[key]
        
        col1, col2, col3, col4 = st.columns(4)
        with col1:
            slate_var1 = st.radio("Which data are you loading?", ('Regular', 'Showdown'))
            if slate_var1 == 'Regular':
                if site_var == 'Draftkings':
                    dk_lineups = init_DK_lineups('Regular')
                    id_dict = dk_id_dict.copy()
                elif site_var == 'Fanduel':
                    fd_lineups = init_FD_lineups('Regular')
                    id_dict = fd_id_dict.copy()
            elif slate_var1 == 'Showdown':
                if site_var == 'Draftkings':
                    dk_lineups = init_DK_lineups('Showdown')
                    id_dict_sd = dk_id_dict_sd.copy()
                elif site_var == 'Fanduel':
                    fd_lineups = init_FD_lineups('Showdown')
                    id_dict_sd = fd_id_dict_sd.copy()

            if slate_var1 == 'Regular':
                raw_baselines = roo_data
            elif slate_var1 == 'Showdown':
                raw_baselines = sd_roo_data
            
            if site_var == 'Draftkings':
                if slate_var1 == 'Regular':
                    ROO_slice = raw_baselines[raw_baselines['Site'] == 'Draftkings']
                    player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary']))
                elif slate_var1 == 'Showdown':
                    player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
                # Get the minimum and maximum ownership values from dk_lineups
                min_own = np.min(dk_lineups[:,8])
                max_own = np.max(dk_lineups[:,8])
                column_names = dk_columns

            elif site_var == 'Fanduel':
                raw_baselines = hold_display
                if slate_var1 == 'Regular':
                    ROO_slice = raw_baselines[raw_baselines['Site'] == 'Fanduel']
                    player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary']))
                elif slate_var1 == 'Showdown':
                    player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
                min_own = np.min(fd_lineups[:,8])
                max_own = np.max(fd_lineups[:,8])
                column_names = fd_columns
        with col2:
            lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1)
        
        with col3:
            player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
            if player_var1 == 'Specific Players':
                    player_var2 = st.multiselect('Which players do you want?', options = raw_baselines['Player'].unique())
            elif player_var1 == 'Full Slate':
                    player_var2 = raw_baselines.Player.values.tolist()
        
        with col4:
            if site_var == 'Draftkings':
                salary_min_var = st.number_input("Minimum salary used", min_value = 0, max_value = 50000, value = 49000, step = 100, key = 'salary_min_var')
                salary_max_var = st.number_input("Maximum salary used", min_value = 0, max_value = 50000, value = 50000, step = 100, key = 'salary_max_var')
            elif site_var == 'Fanduel':
                salary_min_var = st.number_input("Minimum salary used", min_value = 0, max_value = 60000, value = 59000, step = 100, key = 'salary_min_var')
                salary_max_var = st.number_input("Maximum salary used", min_value = 0, max_value = 60000, value = 60000, step = 100, key = 'salary_max_var')

        reg_dl_col, filtered_dl_col, blank_dl_col = st.columns([2, 2, 6])
        with reg_dl_col:
            if st.button("Prepare full data export", key='data_export'):
                name_export = pd.DataFrame(st.session_state.working_seed.copy(), columns=column_names)
                data_export = pd.DataFrame(st.session_state.working_seed.copy(), columns=column_names)
                if site_var == 'Draftkings':
                    if slate_var1 == 'Regular':
                        map_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6']
                    elif slate_var1 == 'Showdown':
                        map_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6']
                elif site_var == 'Fanduel':
                    if slate_var1 == 'Regular':
                        map_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6']
                    elif slate_var1 == 'Showdown':
                        map_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6']
                for col_idx in map_columns:
                    if slate_var1 == 'Regular':
                        data_export[col_idx] = data_export[col_idx].map(id_dict)
                    elif slate_var1 == 'Showdown':
                        data_export[col_idx] = data_export[col_idx].map(id_dict_sd)

                pm_name_export = name_export.drop(columns=['salary', 'proj', 'Own'], axis=1)
                pm_data_export = data_export.drop(columns=['salary', 'proj', 'Own'], axis=1)
                reg_opt_col, pm_opt_col = st.columns(2)

                with reg_opt_col:
                    st.download_button(
                        label="Export optimals set (IDs)",
                        data=convert_df(data_export),
                        file_name='PGA_optimals_export.csv',
                        mime='text/csv',
                    )
                    st.download_button(
                        label="Export optimals set (Names)",
                        data=convert_df(name_export),
                        file_name='PGA_optimals_export.csv',
                        mime='text/csv',
                    )
                with pm_opt_col:
                    st.download_button(
                        label="Portfolio Manager Export (IDs)",
                        data=convert_pm_df(pm_data_export),
                        file_name='PGA_optimals_export.csv',
                        mime='text/csv',
                    )
                    st.download_button(
                        label="Portfolio Manager Export (Names)",
                        data=convert_pm_df(pm_name_export),
                        file_name='PGA_optimals_export.csv',
                        mime='text/csv',
                    )
        with filtered_dl_col:
            if st.button("Prepare full data export (Filtered)", key='data_export_filtered'):
                name_export = pd.DataFrame(st.session_state.working_seed.copy(), columns=column_names)
                data_export = pd.DataFrame(st.session_state.working_seed.copy(), columns=column_names)
                if site_var == 'Draftkings':
                    if slate_var1 == 'Regular':
                        map_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6']
                    elif slate_var1 == 'Showdown':
                        map_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6']
                elif site_var == 'Fanduel':
                    if slate_var1 == 'Regular':
                        map_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6']
                    elif slate_var1 == 'Showdown':
                        map_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6']
                for col_idx in map_columns:
                    if slate_var1 == 'Regular':
                        data_export[col_idx] = data_export[col_idx].map(id_dict)
                    elif slate_var1 == 'Showdown':
                        data_export[col_idx] = data_export[col_idx].map(id_dict_sd)
                data_export = data_export[data_export['salary'] >= salary_min_var]
                data_export = data_export[data_export['salary'] <= salary_max_var]

                name_export = name_export[name_export['salary'] >= salary_min_var]
                name_export = name_export[name_export['salary'] <= salary_max_var]
                
                pm_name_export = name_export.drop(columns=['salary', 'proj', 'Own'], axis=1)
                pm_data_export = data_export.drop(columns=['salary', 'proj', 'Own'], axis=1)

                reg_opt_col, pm_opt_col = st.columns(2)
                with reg_opt_col:
                    st.download_button(
                        label="Export optimals set (IDs)",
                        data=convert_df(data_export),
                        file_name='PGA_optimals_export.csv',
                        mime='text/csv',
                    )
                    st.download_button(
                        label="Export optimals set (Names)",
                        data=convert_df(name_export),
                        file_name='PGA_optimals_export.csv',
                        mime='text/csv',
                    )
                with pm_opt_col:
                    st.download_button(
                        label="Portfolio Manager Export (IDs)",
                        data=convert_pm_df(pm_data_export),
                        file_name='PGA_optimals_export.csv',
                        mime='text/csv',
                    )
                    st.download_button(
                        label="Portfolio Manager Export (Names)",
                        data=convert_pm_df(pm_name_export),
                        file_name='PGA_optimals_export.csv',
                        mime='text/csv',
                    )
        
    if site_var == 'Draftkings':
        if 'working_seed' in st.session_state:
            st.session_state.working_seed = st.session_state.working_seed
            if player_var1 == 'Specific Players':
                st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
            elif player_var1 == 'Full Slate':
                st.session_state.working_seed = dk_lineups.copy()
            st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
        elif 'working_seed' not in st.session_state:
            st.session_state.working_seed = dk_lineups.copy()
            st.session_state.working_seed = st.session_state.working_seed
            if player_var1 == 'Specific Players':
                st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
            elif player_var1 == 'Full Slate':
                st.session_state.working_seed = dk_lineups.copy()
            st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
        
    elif site_var == 'Fanduel':
        if 'working_seed' in st.session_state:
            st.session_state.working_seed = st.session_state.working_seed
            if player_var1 == 'Specific Players':
                st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
            elif player_var1 == 'Full Slate':
                st.session_state.working_seed = fd_lineups.copy()
            st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
        elif 'working_seed' not in st.session_state:
            st.session_state.working_seed = fd_lineups.copy()
            st.session_state.working_seed = st.session_state.working_seed
            if player_var1 == 'Specific Players':
                st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
            elif player_var1 == 'Full Slate':
                st.session_state.working_seed = fd_lineups.copy()
            st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)

    export_file = st.session_state.data_export_display.copy()
    # if site_var1 == 'Draftkings':
    #     for col_idx in range(6):
    #         export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
    # elif site_var1 == 'Fanduel':
    #     for col_idx in range(6):
    #         export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
            
    with st.container():
        if st.button("Reset Optimals", key='reset3'):
            for key in st.session_state.keys():
                del st.session_state[key]
            if site_var == 'Draftkings':
                st.session_state.working_seed = dk_lineups.copy()
            elif site_var == 'Fanduel':
                st.session_state.working_seed = fd_lineups.copy()
        
        st.session_state.data_export_display = st.session_state.data_export_display[st.session_state.data_export_display['salary'].between(salary_min_var, salary_max_var)]
        if 'data_export_display' in st.session_state:
            st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)
        st.download_button(
            label="Export display optimals",
            data=convert_df(export_file),
            file_name='PGA_display_optimals.csv',
            mime='text/csv',
        )
    
    with st.container():
        if 'working_seed' in st.session_state:
            # Create a new dataframe with summary statistics
            if site_var == 'Draftkings':
                summary_df = pd.DataFrame({
                    'Metric': ['Min', 'Average', 'Max', 'STDdev'],
                    'Salary': [
                        np.min(st.session_state.working_seed[:,6]),
                        np.mean(st.session_state.working_seed[:,6]),
                        np.max(st.session_state.working_seed[:,6]),
                        np.std(st.session_state.working_seed[:,6])
                    ],
                    'Proj': [
                        np.min(st.session_state.working_seed[:,7]),
                        np.mean(st.session_state.working_seed[:,7]),
                        np.max(st.session_state.working_seed[:,7]),
                        np.std(st.session_state.working_seed[:,7])
                    ],
                    'Own': [
                        np.min(st.session_state.working_seed[:,8]),
                        np.mean(st.session_state.working_seed[:,8]),
                        np.max(st.session_state.working_seed[:,8]),
                        np.std(st.session_state.working_seed[:,8])
                    ]
                })
            elif site_var == 'Fanduel':
                summary_df = pd.DataFrame({
                    'Metric': ['Min', 'Average', 'Max', 'STDdev'],
                    'Salary': [
                        np.min(st.session_state.working_seed[:,6]),
                        np.mean(st.session_state.working_seed[:,6]),
                        np.max(st.session_state.working_seed[:,6]),
                        np.std(st.session_state.working_seed[:,6])
                    ],
                    'Proj': [
                        np.min(st.session_state.working_seed[:,7]),
                        np.mean(st.session_state.working_seed[:,7]),
                        np.max(st.session_state.working_seed[:,7]),
                        np.std(st.session_state.working_seed[:,7])
                    ],
                    'Own': [
                        np.min(st.session_state.working_seed[:,8]),
                        np.mean(st.session_state.working_seed[:,8]),
                        np.max(st.session_state.working_seed[:,8]),
                        np.std(st.session_state.working_seed[:,8])
                    ]
                })

            # Set the index of the summary dataframe as the "Metric" column
            summary_df = summary_df.set_index('Metric')

            # Display the summary dataframe
            st.subheader("Optimal Statistics")
            st.dataframe(summary_df.style.format({
                'Salary': '{:.2f}',
                'Proj': '{:.2f}',
                'Own': '{:.2f}'
            }).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True)

    with st.container():
        tab1, tab2 = st.tabs(["Display Frequency", "Seed Frame Frequency"])
        with tab1:
            if 'data_export_display' in st.session_state:
                if site_var == 'Draftkings':
                    player_columns = st.session_state.data_export_display.iloc[:, :6]
                elif site_var == 'Fanduel':
                    player_columns = st.session_state.data_export_display.iloc[:, :6]
                
                # Flatten the DataFrame and count unique values
                value_counts = player_columns.values.flatten().tolist()
                value_counts = pd.Series(value_counts).value_counts()
                
                percentages = (value_counts / lineup_num_var * 100).round(2)
                
                # Create a DataFrame with the results
                summary_df = pd.DataFrame({
                    'Player': value_counts.index,
                    'Frequency': value_counts.values,
                    'Percentage': percentages.values
                })
                
                # Sort by frequency in descending order
                summary_df['Salary'] = summary_df['Player'].map(player_salaries)
                summary_df = summary_df[['Player', 'Salary', 'Frequency', 'Percentage']]
                summary_df = summary_df.sort_values('Frequency', ascending=False)
                summary_df = summary_df.set_index('Player')
                
                # Display the table
                st.write("Player Frequency Table:")
                st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True)
            
                st.download_button(
                    label="Export player frequency",
                    data=convert_df_to_csv(summary_df),
                    file_name='PGA_player_frequency.csv',
                    mime='text/csv',
                )
        with tab2:
            if 'working_seed' in st.session_state:
                if site_var == 'Draftkings':
                    player_columns = st.session_state.working_seed[:, :6]
                elif site_var == 'Fanduel':
                    player_columns = st.session_state.working_seed[:, :6]
                
                # Flatten the DataFrame and count unique values
                value_counts = player_columns.flatten().tolist()
                value_counts = pd.Series(value_counts).value_counts()
                
                percentages = (value_counts / len(st.session_state.working_seed) * 100).round(2)
                # Create a DataFrame with the results
                summary_df = pd.DataFrame({
                    'Player': value_counts.index,
                    'Frequency': value_counts.values,
                    'Percentage': percentages.values
                })
                
                # Sort by frequency in descending order
                summary_df['Salary'] = summary_df['Player'].map(player_salaries)
                summary_df = summary_df[['Player', 'Salary', 'Frequency', 'Percentage']]
                summary_df = summary_df.sort_values('Frequency', ascending=False)
                summary_df = summary_df.set_index('Player')
                
                # Display the table
                st.write("Seed Frame Frequency Table:")
                st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True)
            
                st.download_button(
                    label="Export seed frame frequency",
                    data=convert_df_to_csv(summary_df),
                    file_name='PGA_seed_frame_frequency.csv',
                    mime='text/csv',
                )