File size: 20,736 Bytes
af96e17
d70fbe9
 
15461f8
af96e17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c7434b
af96e17
 
 
7c7434b
af96e17
 
 
7c7434b
af96e17
 
 
 
 
 
7c7434b
af96e17
 
7c7434b
 
af96e17
 
 
 
 
 
 
 
 
 
 
 
 
24c7e4d
af96e17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36430a1
af96e17
 
 
 
 
 
 
947d9cc
af96e17
08f94fd
af96e17
 
 
 
 
 
08f94fd
af96e17
08f94fd
 
 
af96e17
08f94fd
af96e17
 
 
 
 
08f94fd
af96e17
08f94fd
 
 
af96e17
08f94fd
af96e17
 
 
 
 
 
 
 
9a0fceb
af96e17
 
 
 
 
08db99b
 
 
 
af96e17
08db99b
af96e17
 
 
 
 
 
 
36430a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af96e17
36430a1
 
264a782
36430a1
 
 
 
 
 
 
af96e17
36430a1
 
 
 
d4ac8fa
36430a1
7a99266
36430a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
264a782
36430a1
 
 
 
 
 
 
 
 
 
 
 
 
264a782
 
d4ac8fa
 
 
 
 
 
 
 
 
 
 
 
36430a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af96e17
36430a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af96e17
36430a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af96e17
36430a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af96e17
36430a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0977b2
36430a1
 
 
 
 
 
 
 
af96e17
 
 
 
d70fbe9
af96e17
6b3aa60
af96e17
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import streamlit as st
import numpy as np
import pandas as pd
from database import db
from itertools import combinations

st.set_page_config(layout="wide")

game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
              'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}

team_roo_format = {'Top Score%': '{:.2%}','0 Runs': '{:.2%}', '1 Run': '{:.2%}', '2 Runs': '{:.2%}', '3 Runs': '{:.2%}', '4 Runs': '{:.2%}',
                   '5 Runs': '{:.2%}','6 Runs': '{:.2%}', '7 Runs': '{:.2%}', '8 Runs': '{:.2%}', '9 Runs': '{:.2%}', '10 Runs': '{:.2%}'}

wrong_acro = ['WSH', 'AZ', 'CHW']
right_acro = ['WAS', 'ARI', 'CWS']

st.markdown("""
<style>
    /* Tab styling */
    .stElementContainer [data-baseweb="button-group"] {
        gap: 2.000rem;
        padding: 4px;
    }
    .stElementContainer [kind="segmented_control"] {
        height: 2.000rem;
        white-space: pre-wrap;
        background-color: #DAA520;
        color: white;
        border-radius: 20px;
        gap: 1px;
        padding: 10px 20px;
        font-weight: bold;
        transition: all 0.3s ease;
    }
    .stElementContainer [kind="segmented_controlActive"] {
        height: 3.000rem;
        background-color: #DAA520;
        border: 3px solid #FFD700;
        border-radius: 10px;
        color: black;
    }
    .stElementContainer [kind="segmented_control"]:hover {
        background-color: #FFD700;
        cursor: pointer;
    }

    div[data-baseweb="select"] > div {
        background-color: #DAA520;
        color: white;
    }

</style>""", unsafe_allow_html=True)

@st.cache_resource(ttl=600)
def init_baselines():

    collection = db["Player_Baselines"] 
    cursor = collection.find()

    raw_display = pd.DataFrame(list(cursor))
    raw_display = raw_display[['name', 'Team', 'Opp', 'Position', 'Salary', 'team_plays', 'team_pass', 'team_rush', 'team_tds', 'team_pass_tds', 'team_rush_tds', 'dropbacks', 'pass_yards', 'pass_tds',
                               'rush_att', 'rush_yards', 'rush_tds', 'targets', 'rec', 'rec_yards', 'rec_tds', 'PPR', 'Half_PPR', 'Own']]
    player_stats = raw_display[raw_display['Position'] != 'K']

    collection = db["DK_NFL_ROO"] 
    cursor = collection.find()

    raw_display = pd.DataFrame(list(cursor))
    raw_display = raw_display.rename(columns={'player_ID': 'player_id'})
    raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
                               'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
    load_display = raw_display[raw_display['Position'] != 'K']
    dk_roo_raw = load_display.dropna(subset=['Median'])

    collection = db["FD_NFL_ROO"] 
    cursor = collection.find()

    raw_display = pd.DataFrame(list(cursor))
    raw_display = raw_display.rename(columns={'player_ID': 'player_id'})
    raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
                               'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']]
    load_display = raw_display[raw_display['Position'] != 'K']
    fd_roo_raw = load_display.dropna(subset=['Median'])

    collection = db["DK_DFS_Stacks"] 
    cursor = collection.find()

    raw_display = pd.DataFrame(list(cursor))
    raw_display = raw_display[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Total', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own', 'LevX', 'slate', 'version']]
    dk_stacks_raw = raw_display.copy()

    collection = db["FD_DFS_Stacks"] 
    cursor = collection.find()

    raw_display = pd.DataFrame(list(cursor))
    raw_display = raw_display[['Team', 'QB', 'WR1_TE', 'WR2_TE', 'Total', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '60+%', '2x%', '3x%', '4x%', 'Own', 'LevX', 'slate', 'version']]
    fd_stacks_raw = raw_display.copy()

    return player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw

@st.cache_data
def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw = init_baselines()

app_load_reset_column, app_view_site_column = st.columns([1, 9])
with app_load_reset_column:
    if st.button("Load/Reset Data", key='reset_data_button'):
        st.cache_data.clear()
        player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw = init_baselines()
        for key in st.session_state.keys():
            del st.session_state[key]
with app_view_site_column:
    with st.container():
        app_view_column, app_site_column = st.columns([3, 3])
        with app_view_column:
            view_var = st.selectbox("Select view", ["Simple", "Advanced"], key='view_selectbox')
        with app_site_column:
            site_var = st.selectbox("What site do you want to view?", ('Draftkings', 'Fanduel'), key='site_selectbox')

selected_tab = st.segmented_control(
    "Select Tab",
    options=["Stack Finder", "User Upload"],
    selection_mode='single',
    default='Stack Finder',
    width='stretch',
    label_visibility='collapsed',
    key='tab_selector'
)

if selected_tab == 'Stack Finder':
    with st.expander("Info and Filters"):
        app_info_column, slate_choice_column, filtering_column, stack_info_column = st.columns(4)
        with app_info_column:
            if st.button("Load/Reset Data", key='reset1'):
                st.cache_data.clear()
                player_stats, dk_stacks_raw, fd_stacks_raw, dk_roo_raw, fd_roo_raw = init_baselines()
                for key in st.session_state.keys():
                    del st.session_state[key]
            st.info(f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST")
        with slate_choice_column:
            slate_var1 = st.radio("What slate are you working with?", ('Main Slate', 'Secondary Slate', 'Late Slate', 'Thurs-Mon Slate', 'User Upload'), key='slate_var1')
            if slate_var1 == 'User Upload':
                slate_var1 = st.session_state['proj_dataframe']
            else:
                if site_var == 'Draftkings':
                    raw_baselines = dk_roo_raw
                    if slate_var1 == 'Main Slate':
                        raw_baselines = raw_baselines[raw_baselines['slate'] == 'Main Slate']
                    elif slate_var1 == 'Secondary Slate':
                        raw_baselines = raw_baselines[raw_baselines['slate'] == 'Secondary Slate']
                    elif slate_var1 == 'Late Slate':
                        raw_baselines = raw_baselines[raw_baselines['slate'] == 'Late Slate']
                    elif slate_var1 == 'Thurs-Mon Slate':
                        raw_baselines = raw_baselines[raw_baselines['slate'] == 'Thurs-Mon Slate']
                    raw_baselines = raw_baselines.sort_values(by='Own', ascending=False)
                    qb_lookup = raw_baselines[raw_baselines['Position'] == 'QB']
                elif site_var == 'Fanduel':
                    raw_baselines = fd_roo_raw
                    if slate_var1 == 'Main Slate':
                        raw_baselines = raw_baselines[raw_baselines['slate'] == 'Main Slate']
                    elif slate_var1 == 'Secondary Slate':
                        raw_baselines = raw_baselines[raw_baselines['slate'] == 'Secondary Slate']
                    elif slate_var1 == 'Late Slate':
                        raw_baselines = raw_baselines[raw_baselines['slate'] == 'Late Slate']
                    elif slate_var1 == 'Thurs-Mon Slate':
                        raw_baselines = raw_baselines[raw_baselines['slate'] == 'Thurs-Mon Slate']
                    raw_baselines = raw_baselines.sort_values(by='Own', ascending=False)
                    qb_lookup = raw_baselines[raw_baselines['Position'] == 'QB']
        with filtering_column:
            split_var2 = st.radio("Would you like to run stack analysis for the full slate or individual teams?", ('Full Slate Run', 'Specific Teams'), key='split_var2')
            if split_var2 == 'Specific Teams':
                team_var2 = st.multiselect('Which teams would you like to include in the analysis?', options = raw_baselines['Team'].unique(), key='team_var2')
            elif split_var2 == 'Full Slate Run':
                team_var2 = raw_baselines.Team.unique().tolist()
            pos_var2 = st.multiselect('What Positions would you like to view?', options = ['WR', 'TE', 'RB'], default = ['WR', 'TE', 'RB'], key='pos_var2')
        with stack_info_column:
            if site_var == 'Draftkings':
                max_sal2 = st.number_input('Max Salary', min_value = 5000, max_value = 50000, value = 35000, step = 100, key='max_sal2')
            elif site_var == 'Fanduel':
                max_sal2 = st.number_input('Max Salary', min_value = 5000, max_value = 35000, value = 25000, step = 100, key='max_sal2')
            size_var2 = st.selectbox('What size of stacks are you analyzing?', options = ['QB+1', 'QB+2', 'QB+3'])
            if size_var2 == 'QB+1':
                stack_size = 2
            if size_var2 == 'QB+2':
                stack_size = 3
            if size_var2 == 'QB+3':
                stack_size = 4

            team_dict = dict(zip(raw_baselines.Player, raw_baselines.Team))
            proj_dict = dict(zip(raw_baselines.Player, raw_baselines.Median))
            own_dict = dict(zip(raw_baselines.Player, raw_baselines.Own))
            cost_dict = dict(zip(raw_baselines.Player, raw_baselines.Salary))
            qb_dict = dict(zip(qb_lookup.Team, qb_lookup.Player))
    if st.button("Run Stack Analysis", key='run_stack_analysis'):
        if site_var == 'Draftkings':
            position_limits = {
                'QB': 1,
                'RB': 2,
                'WR': 3,
                'TE': 1,
                'UTIL': 1,
                'DST': 1,
            }
            max_salary = max_sal2
            max_players = 9
        else:
            position_limits = {
                'QB': 1,
                'RB': 2,
                'WR': 3,
                'TE': 1,
                'UTIL': 1,
                'DST': 1,
            }
            max_salary = max_sal2
            max_players = 9

        stack_hold_container = st.empty()
        comb_list = []
        raw_baselines = raw_baselines[raw_baselines['Position'].str.contains('|'.join(pos_var2 + ['QB']))]

        # Create a position dictionary mapping players to their eligible positions
        pos_dict = dict(zip(raw_baselines.Player, raw_baselines.Position))

        def is_valid_combination(combo):
            # Count positions in this combination
            position_counts = {pos: 0 for pos in position_limits.keys()}
            
            # For each player in the combination
            for player in combo:
                # Get their eligible positions
                player_positions = pos_dict[player].split('/')

                for pos in player_positions:
                    position_counts[pos] += 1
            
            # Check if any position exceeds its limit
            for pos, limit in position_limits.items():
                if position_counts[pos] > limit:
                    return False
            
            return True

        # Modify the combination generation code
        comb_list = []
        for cur_team in team_var2:
            working_baselines = raw_baselines
            working_baselines = working_baselines[working_baselines['Team'] == cur_team]
            working_baselines = working_baselines[working_baselines['Position'] != 'DST']
            working_baselines = working_baselines[working_baselines['Position'] != 'K']
            qb_var = qb_dict[cur_team]
            order_list = working_baselines['Player'].unique()

            comb = combinations(order_list, stack_size)

            for i in list(comb):
                if qb_var in i:
                    comb_list.append(i)

            for i in list(comb):
                if is_valid_combination(i):
                    comb_list.append(i)

        comb_DF = pd.DataFrame(comb_list)

        print(comb_DF.head(10))

        if stack_size == 2:
            comb_DF['Team'] = comb_DF[0].map(team_dict)

            comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict),
                    comb_DF[1].map(proj_dict)])

            comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict),
                    comb_DF[1].map(cost_dict)])

            comb_DF['Own%'] = sum([comb_DF[0].map(own_dict),
                    comb_DF[1].map(own_dict)])
        elif stack_size == 3:
            comb_DF['Team'] = comb_DF[0].map(team_dict)

            comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict),
                    comb_DF[1].map(proj_dict),
                    comb_DF[2].map(proj_dict)])

            comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict),
                    comb_DF[1].map(cost_dict),
                    comb_DF[2].map(cost_dict)])

            comb_DF['Own%'] = sum([comb_DF[0].map(own_dict),
                    comb_DF[1].map(own_dict),
                    comb_DF[2].map(own_dict)])
        elif stack_size == 4:
            comb_DF['Team'] = comb_DF[0].map(team_dict)

            comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict),
                    comb_DF[1].map(proj_dict),
                    comb_DF[2].map(proj_dict),
                    comb_DF[3].map(proj_dict)])

            comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict),
                    comb_DF[1].map(cost_dict),
                    comb_DF[2].map(cost_dict),
                    comb_DF[3].map(cost_dict)])

            comb_DF['Own%'] = sum([comb_DF[0].map(own_dict),
                    comb_DF[1].map(own_dict),
                    comb_DF[2].map(own_dict),
                    comb_DF[3].map(own_dict)])
        elif stack_size == 5:
            comb_DF['Team'] = comb_DF[0].map(team_dict)

            comb_DF['Proj'] = sum([comb_DF[0].map(proj_dict),
                    comb_DF[1].map(proj_dict),
                    comb_DF[2].map(proj_dict),
                    comb_DF[3].map(proj_dict),
                    comb_DF[4].map(proj_dict)])

            comb_DF['Salary'] = sum([comb_DF[0].map(cost_dict),
                    comb_DF[1].map(cost_dict),
                    comb_DF[2].map(cost_dict),
                    comb_DF[3].map(cost_dict),
                    comb_DF[4].map(cost_dict)])

            comb_DF['Own%'] = sum([comb_DF[0].map(own_dict),
                    comb_DF[1].map(own_dict),
                    comb_DF[2].map(own_dict),
                    comb_DF[3].map(own_dict),
                    comb_DF[4].map(own_dict)])

        comb_DF = comb_DF.sort_values(by='Proj', ascending=False)
        comb_DF = comb_DF.loc[comb_DF['Salary'] <= max_sal2]

        cut_var = 0

        if stack_size == 2:
                    while cut_var <= int(len(comb_DF)):
                        try:
                            if int(cut_var) == 0:
                                cur_proj = float(comb_DF.iat[cut_var, 3])
                                cur_own = float(comb_DF.iat[cut_var, 5])
                            elif int(cut_var) >= 1:
                                check_own = float(comb_DF.iat[cut_var, 5])
                                if check_own > cur_own:
                                    comb_DF = comb_DF.drop([cut_var])
                                    cur_own = cur_own
                                    cut_var = cut_var - 1
                                    comb_DF = comb_DF.reset_index()
                                    comb_DF = comb_DF.drop(['index'], axis=1)
                                elif check_own <= cur_own:
                                    cur_own = float(comb_DF.iat[cut_var, 5])
                                    cut_var = cut_var
                            cut_var += 1
                        except:
                            cut_var += 1
        elif stack_size == 3:
            while cut_var <= int(len(comb_DF)):
                try:
                    if int(cut_var) == 0:
                        cur_proj = float(comb_DF.iat[cut_var,4])
                        cur_own = float(comb_DF.iat[cut_var,6])
                    elif int(cut_var) >= 1:
                        check_own = float(comb_DF.iat[cut_var,6])
                        if check_own > cur_own:
                            comb_DF = comb_DF.drop([cut_var])
                            cur_own = cur_own
                            cut_var = cut_var - 1
                            comb_DF = comb_DF.reset_index()
                            comb_DF = comb_DF.drop(['index'], axis=1)
                        elif check_own <= cur_own:
                            cur_own = float(comb_DF.iat[cut_var,6])
                            cut_var = cut_var
                    cut_var += 1
                except:
                    cut_var += 1
        elif stack_size == 4:
            while cut_var <= int(len(comb_DF)):
                try:
                    if int(cut_var) == 0:
                        cur_proj = float(comb_DF.iat[cut_var,5])
                        cur_own = float(comb_DF.iat[cut_var,7])
                    elif int(cut_var) >= 1:
                        check_own = float(comb_DF.iat[cut_var,7])
                        if check_own > cur_own:
                            comb_DF = comb_DF.drop([cut_var])
                            cur_own = cur_own
                            cut_var = cut_var - 1
                            comb_DF = comb_DF.reset_index()
                            comb_DF = comb_DF.drop(['index'], axis=1)
                        elif check_own <= cur_own:
                            cur_own = float(comb_DF.iat[cut_var,7])
                            cut_var = cut_var
                    cut_var += 1
                except:
                    cut_var += 1
        elif stack_size == 5:
            while cut_var <= int(len(comb_DF)):
                try:
                    if int(cut_var) == 0:
                        cur_proj = float(comb_DF.iat[cut_var,6])
                        cur_own = float(comb_DF.iat[cut_var,8])
                    elif int(cut_var) >= 1:
                        check_own = float(comb_DF.iat[cut_var,8])
                        if check_own > cur_own:
                            comb_DF = comb_DF.drop([cut_var])
                            cur_own = cur_own
                            cut_var = cut_var - 1
                            comb_DF = comb_DF.reset_index()
                            comb_DF = comb_DF.drop(['index'], axis=1)
                        elif check_own <= cur_own:
                            cur_own = float(comb_DF.iat[cut_var,8])
                            cut_var = cut_var
                    cut_var += 1
                except:
                    cut_var += 1
        st.session_state['display_frame'] = comb_DF
    if 'display_frame' in st.session_state:
        st.dataframe(st.session_state['display_frame'].style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), hide_index=True, use_container_width = True)
        st.download_button(
                label="Export Tables",
                data=convert_df_to_csv(st.session_state['display_frame']),
                file_name='NFL_Stack_Options_export.csv',
                mime='text/csv',
        )
    else:
        st.info("When you run the stack analysis, the results will be displayed here. Open up the 'Info and Filters' tab to check the settings.")

if selected_tab == 'User Upload':
    st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', and 'Own'.")
    col1, col2 = st.columns([1, 5])

    with col1:
        proj_file = st.file_uploader("Upload Projections", key = 'proj_uploader')
    
        if proj_file is not None:
                  try:
                            st.session_state['proj_dataframe'] = pd.read_csv(proj_file)
                  except:
                            st.session_state['proj_dataframe'] = pd.read_excel(proj_file)
    with col2:
        if proj_file is not None:  
                  st.dataframe(st.session_state['proj_dataframe'].style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)