File size: 45,382 Bytes
9828b0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
{
  "cells": [
    {
      "attachments": {},
      "cell_type": "markdown",
      "id": "ae1f50ec",
      "metadata": {
        "id": "ae1f50ec"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/microsoft/autogen/blob/main/notebook/agentchat_function_call.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "attachments": {},
      "cell_type": "markdown",
      "id": "9a71fa36",
      "metadata": {
        "id": "9a71fa36"
      },
      "source": [
        "# Auto Generated Agent Chat: Task Solving with Provided Tools as Functions\n",
        "\n",
        "AutoGen offers conversable agents powered by LLM, tool or human, which can be used to perform tasks collectively via automated chat. This framwork allows tool use and human participance through multi-agent conversation. Please find documentation about this feature [here](https://microsoft.github.io/autogen/docs/Use-Cases/agent_chat).\n",
        "\n",
        "In this notebook, we demonstrate how to use `AssistantAgent` and `UserProxyAgent` to make function calls with the new feature of OpenAI models (in model version 0613). A specified prompt and function configs need to be passed to `AssistantAgent` to initialize the agent. The corresponding functions need to be passed to `UserProxyAgent`, which will be responsible for executing any function calls made by `AssistantAgent`. Besides this requirement of matching descriptions with functions, we recommend checking the system message in the `AssistantAgent` to make sure the instructions align with the function call descriptions.\n",
        "\n",
        "## Requirements\n",
        "\n",
        "AutoGen requires `Python>=3.8`. To run this notebook example, please install the [mathchat] option since we will import functions from `MathUserProxyAgent`:\n",
        "```bash\n",
        "pip install \"pyautogen[mathchat]\"\n",
        "```"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "2b803c17",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "2b803c17",
        "outputId": "2e12aa3f-e46c-4b82-cc2e-1495f70a2961"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Requirement already satisfied: pyautogen[mathchat]~=0.1.0 in /usr/local/lib/python3.10/dist-packages (0.1.4)\n",
            "Requirement already satisfied: diskcache in /usr/local/lib/python3.10/dist-packages (from pyautogen[mathchat]~=0.1.0) (5.6.3)\n",
            "Requirement already satisfied: flaml in /usr/local/lib/python3.10/dist-packages (from pyautogen[mathchat]~=0.1.0) (2.1.0)\n",
            "Requirement already satisfied: openai in /usr/local/lib/python3.10/dist-packages (from pyautogen[mathchat]~=0.1.0) (0.28.1)\n",
            "Requirement already satisfied: termcolor in /usr/local/lib/python3.10/dist-packages (from pyautogen[mathchat]~=0.1.0) (2.3.0)\n",
            "Requirement already satisfied: pydantic==1.10.9 in /usr/local/lib/python3.10/dist-packages (from pyautogen[mathchat]~=0.1.0) (1.10.9)\n",
            "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from pyautogen[mathchat]~=0.1.0) (1.12)\n",
            "Requirement already satisfied: wolframalpha in /usr/local/lib/python3.10/dist-packages (from pyautogen[mathchat]~=0.1.0) (5.0.0)\n",
            "Requirement already satisfied: typing-extensions>=4.2.0 in /usr/local/lib/python3.10/dist-packages (from pydantic==1.10.9->pyautogen[mathchat]~=0.1.0) (4.5.0)\n",
            "Requirement already satisfied: NumPy>=1.17.0rc1 in /usr/local/lib/python3.10/dist-packages (from flaml->pyautogen[mathchat]~=0.1.0) (1.23.5)\n",
            "Requirement already satisfied: requests>=2.20 in /usr/local/lib/python3.10/dist-packages (from openai->pyautogen[mathchat]~=0.1.0) (2.31.0)\n",
            "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from openai->pyautogen[mathchat]~=0.1.0) (4.66.1)\n",
            "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from openai->pyautogen[mathchat]~=0.1.0) (3.8.5)\n",
            "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->pyautogen[mathchat]~=0.1.0) (1.3.0)\n",
            "Requirement already satisfied: xmltodict in /usr/local/lib/python3.10/dist-packages (from wolframalpha->pyautogen[mathchat]~=0.1.0) (0.13.0)\n",
            "Requirement already satisfied: more-itertools in /usr/local/lib/python3.10/dist-packages (from wolframalpha->pyautogen[mathchat]~=0.1.0) (10.1.0)\n",
            "Requirement already satisfied: jaraco.context in /usr/local/lib/python3.10/dist-packages (from wolframalpha->pyautogen[mathchat]~=0.1.0) (4.3.0)\n",
            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.20->openai->pyautogen[mathchat]~=0.1.0) (3.2.0)\n",
            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.20->openai->pyautogen[mathchat]~=0.1.0) (3.4)\n",
            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.20->openai->pyautogen[mathchat]~=0.1.0) (2.0.4)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.20->openai->pyautogen[mathchat]~=0.1.0) (2023.7.22)\n",
            "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai->pyautogen[mathchat]~=0.1.0) (23.1.0)\n",
            "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai->pyautogen[mathchat]~=0.1.0) (6.0.4)\n",
            "Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai->pyautogen[mathchat]~=0.1.0) (4.0.3)\n",
            "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai->pyautogen[mathchat]~=0.1.0) (1.9.2)\n",
            "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai->pyautogen[mathchat]~=0.1.0) (1.4.0)\n",
            "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai->pyautogen[mathchat]~=0.1.0) (1.3.1)\n"
          ]
        }
      ],
      "source": [
        "%pip install \"pyautogen[mathchat]~=0.1.0\""
      ]
    },
    {
      "attachments": {},
      "cell_type": "markdown",
      "id": "5ebd2397",
      "metadata": {
        "id": "5ebd2397"
      },
      "source": [
        "## Set your API Endpoint\n",
        "\n",
        "The [`config_list_from_models`](https://microsoft.github.io/autogen/docs/reference/oai/openai_utils#config_list_from_models) function tries to create a list of configurations using Azure OpenAI endpoints and OpenAI endpoints for the provided list of models. It assumes the api keys and api bases are stored in the corresponding environment variables or local txt files:\n",
        "\n",
        "- OpenAI API key: os.environ[\"OPENAI_API_KEY\"] or `openai_api_key_file=\"key_openai.txt\"`.\n",
        "- Azure OpenAI API key: os.environ[\"AZURE_OPENAI_API_KEY\"] or `aoai_api_key_file=\"key_aoai.txt\"`. Multiple keys can be stored, one per line.\n",
        "- Azure OpenAI API base: os.environ[\"AZURE_OPENAI_API_BASE\"] or `aoai_api_base_file=\"base_aoai.txt\"`. Multiple bases can be stored, one per line.\n",
        "\n",
        "It's OK to have only the OpenAI API key, or only the Azure OpenAI API key + base.\n",
        "If you open this notebook in google colab, you can upload your files by click the file icon on the left panel and then choose \"upload file\" icon.\n",
        "\n",
        "The following code excludes Azure OpenAI endpoints from the config list because some endpoints don't support functions yet. Remove the `exclude` argument if they do."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "dca301a4",
      "metadata": {
        "id": "dca301a4"
      },
      "outputs": [],
      "source": [
        "import autogen\n",
        "\n",
        "config_list = autogen.config_list_from_models(model_list=[\"gpt-4\", \"gpt-3.5-turbo\", \"gpt-3.5-turbo-16k\"], exclude=\"aoai\", openai_api_key_file=\"key_openai.txt\")\n"
      ]
    },
    {
      "attachments": {},
      "cell_type": "markdown",
      "id": "2b9526e7",
      "metadata": {
        "id": "2b9526e7"
      },
      "source": [
        "## Making Function Calls\n",
        "\n",
        "In this example, we demonstrate function call execution with `AssistantAgent` and `UserProxyAgent`. With the default system prompt of `AssistantAgent`, we allow the LLM assistant to perform tasks with code, and the `UserProxyAgent` would extract code blocks from the LLM response and execute them. With the new \"function_call\" feature, we define functions and specify the description of the function in the OpenAI config for the `AssistantAgent`. Then we register the functions in `UserProxyAgent`.\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "ngpFkWh5ad9M",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "ngpFkWh5ad9M",
        "outputId": "d33b51c6-5dfe-402d-dce4-6b40fca85d3d"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Requirement already satisfied: Langchain in /usr/local/lib/python3.10/dist-packages (0.0.305)\n",
            "Requirement already satisfied: PyYAML>=5.3 in /usr/local/lib/python3.10/dist-packages (from Langchain) (6.0.1)\n",
            "Requirement already satisfied: SQLAlchemy<3,>=1.4 in /usr/local/lib/python3.10/dist-packages (from Langchain) (2.0.20)\n",
            "Requirement already satisfied: aiohttp<4.0.0,>=3.8.3 in /usr/local/lib/python3.10/dist-packages (from Langchain) (3.8.5)\n",
            "Requirement already satisfied: anyio<4.0 in /usr/local/lib/python3.10/dist-packages (from Langchain) (3.7.1)\n",
            "Requirement already satisfied: async-timeout<5.0.0,>=4.0.0 in /usr/local/lib/python3.10/dist-packages (from Langchain) (4.0.3)\n",
            "Requirement already satisfied: dataclasses-json<0.7,>=0.5.7 in /usr/local/lib/python3.10/dist-packages (from Langchain) (0.6.1)\n",
            "Requirement already satisfied: jsonpatch<2.0,>=1.33 in /usr/local/lib/python3.10/dist-packages (from Langchain) (1.33)\n",
            "Requirement already satisfied: langsmith<0.1.0,>=0.0.38 in /usr/local/lib/python3.10/dist-packages (from Langchain) (0.0.41)\n",
            "Requirement already satisfied: numexpr<3.0.0,>=2.8.4 in /usr/local/lib/python3.10/dist-packages (from Langchain) (2.8.5)\n",
            "Requirement already satisfied: numpy<2,>=1 in /usr/local/lib/python3.10/dist-packages (from Langchain) (1.23.5)\n",
            "Requirement already satisfied: pydantic<3,>=1 in /usr/local/lib/python3.10/dist-packages (from Langchain) (1.10.9)\n",
            "Requirement already satisfied: requests<3,>=2 in /usr/local/lib/python3.10/dist-packages (from Langchain) (2.31.0)\n",
            "Requirement already satisfied: tenacity<9.0.0,>=8.1.0 in /usr/local/lib/python3.10/dist-packages (from Langchain) (8.2.3)\n",
            "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->Langchain) (23.1.0)\n",
            "Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->Langchain) (3.2.0)\n",
            "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->Langchain) (6.0.4)\n",
            "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->Langchain) (1.9.2)\n",
            "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->Langchain) (1.4.0)\n",
            "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->Langchain) (1.3.1)\n",
            "Requirement already satisfied: idna>=2.8 in /usr/local/lib/python3.10/dist-packages (from anyio<4.0->Langchain) (3.4)\n",
            "Requirement already satisfied: sniffio>=1.1 in /usr/local/lib/python3.10/dist-packages (from anyio<4.0->Langchain) (1.3.0)\n",
            "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<4.0->Langchain) (1.1.3)\n",
            "Requirement already satisfied: marshmallow<4.0.0,>=3.18.0 in /usr/local/lib/python3.10/dist-packages (from dataclasses-json<0.7,>=0.5.7->Langchain) (3.20.1)\n",
            "Requirement already satisfied: typing-inspect<1,>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from dataclasses-json<0.7,>=0.5.7->Langchain) (0.9.0)\n",
            "Requirement already satisfied: jsonpointer>=1.9 in /usr/local/lib/python3.10/dist-packages (from jsonpatch<2.0,>=1.33->Langchain) (2.4)\n",
            "Requirement already satisfied: typing-extensions>=4.2.0 in /usr/local/lib/python3.10/dist-packages (from pydantic<3,>=1->Langchain) (4.5.0)\n",
            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2->Langchain) (2.0.4)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2->Langchain) (2023.7.22)\n",
            "Requirement already satisfied: greenlet!=0.4.17 in /usr/local/lib/python3.10/dist-packages (from SQLAlchemy<3,>=1.4->Langchain) (2.0.2)\n",
            "Requirement already satisfied: packaging>=17.0 in /usr/local/lib/python3.10/dist-packages (from marshmallow<4.0.0,>=3.18.0->dataclasses-json<0.7,>=0.5.7->Langchain) (23.1)\n",
            "Requirement already satisfied: mypy-extensions>=0.3.0 in /usr/local/lib/python3.10/dist-packages (from typing-inspect<1,>=0.4.0->dataclasses-json<0.7,>=0.5.7->Langchain) (1.0.0)\n"
          ]
        }
      ],
      "source": [
        "%pip install Langchain"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "qCzNbbVajvpc",
      "metadata": {
        "id": "qCzNbbVajvpc"
      },
      "outputs": [],
      "source": [
        "# Import things that are needed generically\n",
        "from langchain.pydantic_v1 import BaseModel, Field\n",
        "from langchain.tools import BaseTool, StructuredTool, Tool, tool\n",
        "from typing import Optional, Type\n",
        "import math\n",
        "\n",
        "class CircumferenceToolInput(BaseModel):\n",
        "    radius: float = Field()\n",
        "\n",
        "class CircumferenceTool(BaseTool):\n",
        "    name = \"circumference_calculator\"\n",
        "    description = \"Use this tool when you need to calculate a circumference using the radius of a circle\"\n",
        "    args_schema: Type[BaseModel] = CircumferenceToolInput\n",
        "\n",
        "    def _run(self, radius: float):\n",
        "        return float(radius) * 2.0 * math.pi"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "COlL5_98atDs",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "COlL5_98atDs",
        "outputId": "24ce236d-8993-4a69-99e2-65453574d61e"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "{'functions': [{'name': 'circumference_calculator', 'description': 'Use this tool when you need to calculate a circumference using the radius of a circle', 'parameters': {'type': 'object', 'properties': {'radius': {'title': 'Radius', 'type': 'number'}}, 'required': []}}, {'name': 'read_file', 'description': 'Read file from disk', 'parameters': {'type': 'object', 'properties': {'file_path': {'title': 'File Path', 'description': 'name of file', 'type': 'string'}}, 'required': []}}], 'config_list': [{'api_key': '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', 'model': 'gpt-4'}, {'api_key': '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', 'model': 'gpt-3.5-turbo'}, {'api_key': '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', 'model': 'gpt-3.5-turbo-16k'}], 'request_timeout': 120}\n",
            "user_proxy (to chatbot):\n",
            "\n",
            "Read the file with the path 'Test.txt', then calculate the circumference of a circle that has a radius of that files contents.\n",
            "\n",
            "--------------------------------------------------------------------------------\n",
            "chatbot (to user_proxy):\n",
            "\n",
            "***** Suggested function Call: read_file *****\n",
            "Arguments: \n",
            "{\n",
            "  \"file_path\": \"Test.txt\"\n",
            "}\n",
            "**********************************************\n",
            "\n",
            "--------------------------------------------------------------------------------\n",
            "\n",
            ">>>>>>>> EXECUTING FUNCTION read_file...\n",
            "user_proxy (to chatbot):\n",
            "\n",
            "***** Response from calling function \"read_file\" *****\n",
            "7.81mm\n",
            "******************************************************\n",
            "\n",
            "--------------------------------------------------------------------------------\n",
            "chatbot (to user_proxy):\n",
            "\n",
            "***** Suggested function Call: circumference_calculator *****\n",
            "Arguments: \n",
            "{\n",
            "  \"radius\": 7.81\n",
            "}\n",
            "*************************************************************\n",
            "\n",
            "--------------------------------------------------------------------------------\n",
            "\n",
            ">>>>>>>> EXECUTING FUNCTION circumference_calculator...\n",
            "user_proxy (to chatbot):\n",
            "\n",
            "***** Response from calling function \"circumference_calculator\" *****\n",
            "49.071677249072565\n",
            "*********************************************************************\n",
            "\n",
            "--------------------------------------------------------------------------------\n",
            "chatbot (to user_proxy):\n",
            "\n",
            "The circumference of a circle with a radius of 7.81mm is approximately 49.071mm.\n",
            "\n",
            "--------------------------------------------------------------------------------\n",
            "user_proxy (to chatbot):\n",
            "\n",
            "\n",
            "\n",
            "--------------------------------------------------------------------------------\n",
            "chatbot (to user_proxy):\n",
            "\n",
            "TERMINATE\n",
            "\n",
            "--------------------------------------------------------------------------------\n"
          ]
        }
      ],
      "source": [
        "from langchain.tools.file_management.read import ReadFileTool\n",
        "\n",
        "# Define a function to generate llm_config from a LangChain tool\n",
        "def generate_llm_config(tool):\n",
        "    # Define the function schema based on the tool's args_schema\n",
        "    function_schema = {\n",
        "        \"name\": tool.name.lower().replace (' ', '_'),\n",
        "        \"description\": tool.description,\n",
        "        \"parameters\": {\n",
        "            \"type\": \"object\",\n",
        "            \"properties\": {},\n",
        "            \"required\": [],\n",
        "        },\n",
        "    }\n",
        "\n",
        "    if tool.args is not None:\n",
        "      function_schema[\"parameters\"][\"properties\"] = tool.args\n",
        "\n",
        "    return function_schema\n",
        "\n",
        "# Instantiate the ReadFileTool\n",
        "read_file_tool = ReadFileTool()\n",
        "custom_tool = CircumferenceTool()\n",
        "\n",
        "# Construct the llm_config\n",
        "llm_config = {\n",
        "  #Generate functions config for the Tool\n",
        "  \"functions\":[\n",
        "      generate_llm_config(custom_tool),\n",
        "      generate_llm_config(read_file_tool),\n",
        "  ],\n",
        "  \"config_list\": config_list,  # Assuming you have this defined elsewhere\n",
        "  \"request_timeout\": 120,\n",
        "}\n",
        "\n",
        "print(llm_config)\n",
        "\n",
        "user_proxy = autogen.UserProxyAgent(\n",
        "    name=\"user_proxy\",\n",
        "    is_termination_msg=lambda x: x.get(\"content\", \"\") and x.get(\"content\", \"\").rstrip().endswith(\"TERMINATE\"),\n",
        "    human_input_mode=\"NEVER\",\n",
        "    max_consecutive_auto_reply=10,\n",
        "    code_execution_config={\"work_dir\": \"coding\"},\n",
        ")\n",
        "\n",
        "# Register the tool and start the conversation\n",
        "user_proxy.register_function(\n",
        "    function_map={\n",
        "        custom_tool.name: custom_tool._run,\n",
        "        read_file_tool.name: read_file_tool._run,\n",
        "    }\n",
        ")\n",
        "\n",
        "chatbot = autogen.AssistantAgent(\n",
        "    name=\"chatbot\",\n",
        "    system_message=\"For coding tasks, only use the functions you have been provided with. Reply TERMINATE when the task is done.\",\n",
        "    llm_config=llm_config,\n",
        ")\n",
        "\n",
        "user_proxy.initiate_chat(\n",
        "    chatbot,\n",
        "    message=\"Read the file with the path 'Test.txt', then calculate the circumference of a circle that has a radius of that files contents.\", #\" 7.81mm\" in the file\n",
        "    llm_config=llm_config,\n",
        ")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "Y-ozf9EFCegw",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "Y-ozf9EFCegw",
        "outputId": "db7b73a8-6129-4dfb-9d5c-ac3536f310d7"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Requirement already satisfied: pyspark in /usr/local/lib/python3.10/dist-packages (3.5.0)\n",
            "Requirement already satisfied: py4j==0.10.9.7 in /usr/local/lib/python3.10/dist-packages (from pyspark) (0.10.9.7)\n"
          ]
        }
      ],
      "source": [
        "%pip install pyspark"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "7iFp-Sm4CYq_",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "7iFp-Sm4CYq_",
        "outputId": "2e1a2a70-53e6-4896-9232-63db6d097d63"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "+---------+--------+------------------+-----------+--------------+----------+----------+-------------+------------------+\n",
            "|longitude|latitude|housing_median_age|total_rooms|total_bedrooms|population|households|median_income|median_house_value|\n",
            "+---------+--------+------------------+-----------+--------------+----------+----------+-------------+------------------+\n",
            "|  -114.31|   34.19|              15.0|     5612.0|        1283.0|    1015.0|     472.0|       1.4936|           66900.0|\n",
            "|  -114.47|    34.4|              19.0|     7650.0|        1901.0|    1129.0|     463.0|         1.82|           80100.0|\n",
            "|  -114.56|   33.69|              17.0|      720.0|         174.0|     333.0|     117.0|       1.6509|           85700.0|\n",
            "|  -114.57|   33.64|              14.0|     1501.0|         337.0|     515.0|     226.0|       3.1917|           73400.0|\n",
            "|  -114.57|   33.57|              20.0|     1454.0|         326.0|     624.0|     262.0|        1.925|           65500.0|\n",
            "|  -114.58|   33.63|              29.0|     1387.0|         236.0|     671.0|     239.0|       3.3438|           74000.0|\n",
            "|  -114.58|   33.61|              25.0|     2907.0|         680.0|    1841.0|     633.0|       2.6768|           82400.0|\n",
            "|  -114.59|   34.83|              41.0|      812.0|         168.0|     375.0|     158.0|       1.7083|           48500.0|\n",
            "|  -114.59|   33.61|              34.0|     4789.0|        1175.0|    3134.0|    1056.0|       2.1782|           58400.0|\n",
            "|   -114.6|   34.83|              46.0|     1497.0|         309.0|     787.0|     271.0|       2.1908|           48100.0|\n",
            "|   -114.6|   33.62|              16.0|     3741.0|         801.0|    2434.0|     824.0|       2.6797|           86500.0|\n",
            "|   -114.6|    33.6|              21.0|     1988.0|         483.0|    1182.0|     437.0|        1.625|           62000.0|\n",
            "|  -114.61|   34.84|              48.0|     1291.0|         248.0|     580.0|     211.0|       2.1571|           48600.0|\n",
            "|  -114.61|   34.83|              31.0|     2478.0|         464.0|    1346.0|     479.0|        3.212|           70400.0|\n",
            "|  -114.63|   32.76|              15.0|     1448.0|         378.0|     949.0|     300.0|       0.8585|           45000.0|\n",
            "|  -114.65|   34.89|              17.0|     2556.0|         587.0|    1005.0|     401.0|       1.6991|           69100.0|\n",
            "|  -114.65|    33.6|              28.0|     1678.0|         322.0|     666.0|     256.0|       2.9653|           94900.0|\n",
            "|  -114.65|   32.79|              21.0|       44.0|          33.0|      64.0|      27.0|       0.8571|           25000.0|\n",
            "|  -114.66|   32.74|              17.0|     1388.0|         386.0|     775.0|     320.0|       1.2049|           44000.0|\n",
            "|  -114.67|   33.92|              17.0|       97.0|          24.0|      29.0|      15.0|       1.2656|           27500.0|\n",
            "+---------+--------+------------------+-----------+--------------+----------+----------+-------------+------------------+\n",
            "only showing top 20 rows\n",
            "\n"
          ]
        }
      ],
      "source": [
        "#Starndard Langchain example\n",
        "from langchain.agents import create_spark_sql_agent\n",
        "from langchain.agents.agent_toolkits import SparkSQLToolkit\n",
        "from langchain.chat_models import ChatOpenAI\n",
        "from langchain.utilities.spark_sql import SparkSQL\n",
        "from pyspark.sql import SparkSession\n",
        "\n",
        "spark = SparkSession.builder.getOrCreate()\n",
        "schema = \"langchain_example\"\n",
        "spark.sql(f\"CREATE DATABASE IF NOT EXISTS {schema}\")\n",
        "spark.sql(f\"USE {schema}\")\n",
        "csv_file_path = \"./sample_data/california_housing_train.csv\"\n",
        "table = \"california_housing_train\"\n",
        "spark.read.csv(csv_file_path, header=True, inferSchema=True).write.option(\"path\", \"file:/content/spark-warehouse/langchain_example.db/california_housing_train\").mode(\"overwrite\").saveAsTable(table)\n",
        "spark.table(table).show()"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "iLtSTHoJD7Jn",
      "metadata": {
        "id": "iLtSTHoJD7Jn"
      },
      "outputs": [],
      "source": [
        "# Note, you can also connect to Spark via Spark connect. For example:\n",
        "# db = SparkSQL.from_uri(\"sc://localhost:15002\", schema=schema)\n",
        "spark_sql = SparkSQL(schema=schema)\n",
        "llm = ChatOpenAI(temperature=0, model=\"gpt-3.5-turbo-16k\")\n",
        "toolkit = SparkSQLToolkit(db=spark_sql, llm=llm)\n",
        "agent_executor = create_spark_sql_agent(llm=llm, toolkit=toolkit, verbose=True)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "VzqNYlVjCqQa",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 608
        },
        "id": "VzqNYlVjCqQa",
        "outputId": "dd4de772-7b0c-4650-d106-c83d4593158e"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "\n",
            "\n",
            "\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
            "\u001b[32;1m\u001b[1;3mAction: list_tables_sql_db\n",
            "Action Input: \"\"\u001b[0m\n",
            "Observation: \u001b[38;5;200m\u001b[1;3mcalifornia_housing_train\u001b[0m\n",
            "Thought:\u001b[32;1m\u001b[1;3mI see that there is a table called \"california_housing_train\" in the database. I can use the \"schema_sql_db\" tool to get more information about this table.\n",
            "Action: schema_sql_db\n",
            "Action Input: \"california_housing_train\"\u001b[0m\n",
            "Observation: \u001b[33;1m\u001b[1;3mCREATE TABLE spark_catalog.langchain_example.california_housing_train (\n",
            "  longitude DOUBLE,\n",
            "  latitude DOUBLE,\n",
            "  housing_median_age DOUBLE,\n",
            "  total_rooms DOUBLE,\n",
            "  total_bedrooms DOUBLE,\n",
            "  population DOUBLE,\n",
            "  households DOUBLE,\n",
            "  median_income DOUBLE,\n",
            "  median_house_value DOUBLE)\n",
            ";\n",
            "\n",
            "/*\n",
            "3 rows from california_housing_train table:\n",
            "longitude\tlatitude\thousing_median_age\ttotal_rooms\ttotal_bedrooms\tpopulation\thouseholds\tmedian_income\tmedian_house_value\n",
            "-114.31\t34.19\t15.0\t5612.0\t1283.0\t1015.0\t472.0\t1.4936\t66900.0\n",
            "-114.47\t34.4\t19.0\t7650.0\t1901.0\t1129.0\t463.0\t1.82\t80100.0\n",
            "-114.56\t33.69\t17.0\t720.0\t174.0\t333.0\t117.0\t1.6509\t85700.0\n",
            "*/\u001b[0m\n",
            "Thought:\u001b[32;1m\u001b[1;3mThe \"california_housing_train\" table has the following columns: longitude, latitude, housing_median_age, total_rooms, total_bedrooms, population, households, median_income, and median_house_value. It contains information about housing in California. I can now answer the question.\n",
            "Action: None\n",
            "Final Answer: The \"california_housing_train\" table has the following columns: longitude, latitude, housing_median_age, total_rooms, total_bedrooms, population, households, median_income, and median_house_value.\u001b[0m\n",
            "\n",
            "\u001b[1m> Finished chain.\u001b[0m\n"
          ]
        },
        {
          "data": {
            "application/vnd.google.colaboratory.intrinsic+json": {
              "type": "string"
            },
            "text/plain": [
              "'The \"california_housing_train\" table has the following columns: longitude, latitude, housing_median_age, total_rooms, total_bedrooms, population, households, median_income, and median_house_value.'"
            ]
          },
          "execution_count": 10,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "#Starndard Langchain example\n",
        "agent_executor.run(\"Describe the california_housing_train table\")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "d94d45a9",
      "metadata": {},
      "outputs": [],
      "source": [
        "# LangChain direct tool usage instead of toolkit example\n",
        "# from langchain.tools.spark_sql.tool import (\n",
        "#     InfoSparkSQLTool,\n",
        "#     ListSparkSQLTool,\n",
        "#     QueryCheckerTool,\n",
        "#     QuerySparkSQLTool,\n",
        "# )\n",
        "# debug_toolkit = [\n",
        "#   QuerySparkSQLTool(db=spark_sql),\n",
        "#   InfoSparkSQLTool(db=spark_sql),\n",
        "#   ListSparkSQLTool(db=spark_sql),\n",
        "#   QueryCheckerTool(db=spark_sql, llm=llm),\n",
        "#]"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "r7PFvDS7Ev-E",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "r7PFvDS7Ev-E",
        "outputId": "53d9c45d-058e-4e37-ba73-556591aaab42"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "{'name': 'query_sql_db', 'description': '\\n    Input to this tool is a detailed and correct SQL query, output is a result from the Spark SQL.\\n    If the query is not correct, an error message will be returned.\\n    If an error is returned, rewrite the query, check the query, and try again.\\n    ', 'parameters': {'type': 'object', 'properties': {'query': {'title': 'Query', 'type': 'string'}}, 'required': []}}\n",
            "{'name': 'schema_sql_db', 'description': '\\n    Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables.\\n    Be sure that the tables actually exist by calling list_tables_sql_db first!\\n\\n    Example Input: \"table1, table2, table3\"\\n    ', 'parameters': {'type': 'object', 'properties': {'table_names': {'title': 'Table Names', 'type': 'string'}}, 'required': []}}\n",
            "{'name': 'list_tables_sql_db', 'description': 'Input is an empty string, output is a comma separated list of tables in the Spark SQL.', 'parameters': {'type': 'object', 'properties': {'tool_input': {'title': 'Tool Input', 'default': '', 'type': 'string'}}, 'required': []}}\n",
            "{'name': 'query_checker_sql_db', 'description': '\\n    Use this tool to double check if your query is correct before executing it.\\n    Always use this tool before executing a query with query_sql_db!\\n    ', 'parameters': {'type': 'object', 'properties': {'query': {'title': 'Query', 'type': 'string'}}, 'required': []}}\n",
            "{'query_sql_db': <bound method QuerySparkSQLTool._run of QuerySparkSQLTool(name='query_sql_db', description='\\n    Input to this tool is a detailed and correct SQL query, output is a result from the Spark SQL.\\n    If the query is not correct, an error message will be returned.\\n    If an error is returned, rewrite the query, check the query, and try again.\\n    ', args_schema=None, return_direct=False, verbose=False, callbacks=None, callback_manager=None, tags=None, metadata=None, handle_tool_error=False, db=<langchain.utilities.spark_sql.SparkSQL object at 0x79eb20467580>)>, 'schema_sql_db': <bound method InfoSparkSQLTool._run of InfoSparkSQLTool(name='schema_sql_db', description='\\n    Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables.\\n    Be sure that the tables actually exist by calling list_tables_sql_db first!\\n\\n    Example Input: \"table1, table2, table3\"\\n    ', args_schema=None, return_direct=False, verbose=False, callbacks=None, callback_manager=None, tags=None, metadata=None, handle_tool_error=False, db=<langchain.utilities.spark_sql.SparkSQL object at 0x79eb20467580>)>, 'list_tables_sql_db': <bound method ListSparkSQLTool._run of ListSparkSQLTool(name='list_tables_sql_db', description='Input is an empty string, output is a comma separated list of tables in the Spark SQL.', args_schema=None, return_direct=False, verbose=False, callbacks=None, callback_manager=None, tags=None, metadata=None, handle_tool_error=False, db=<langchain.utilities.spark_sql.SparkSQL object at 0x79eb20467580>)>, 'query_checker_sql_db': <bound method QueryCheckerTool._run of QueryCheckerTool(name='query_checker_sql_db', description='\\n    Use this tool to double check if your query is correct before executing it.\\n    Always use this tool before executing a query with query_sql_db!\\n    ', args_schema=None, return_direct=False, verbose=False, callbacks=None, callback_manager=None, tags=None, metadata=None, handle_tool_error=False, db=<langchain.utilities.spark_sql.SparkSQL object at 0x79eb20467580>, template='\\n{query}\\nDouble check the Spark SQL query above for common mistakes, including:\\n- Using NOT IN with NULL values\\n- Using UNION when UNION ALL should have been used\\n- Using BETWEEN for exclusive ranges\\n- Data type mismatch in predicates\\n- Properly quoting identifiers\\n- Using the correct number of arguments for functions\\n- Casting to the correct data type\\n- Using the proper columns for joins\\n\\nIf there are any of the above mistakes, rewrite the query. If there are no mistakes, just reproduce the original query.', llm=ChatOpenAI(client=<class 'openai.api_resources.chat_completion.ChatCompletion'>, model_name='gpt-3.5-turbo-16k', temperature=0.0, openai_api_key='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', openai_api_base='', openai_organization='', openai_proxy=''), llm_chain=LLMChain(prompt=PromptTemplate(input_variables=['query'], template='\\n{query}\\nDouble check the Spark SQL query above for common mistakes, including:\\n- Using NOT IN with NULL values\\n- Using UNION when UNION ALL should have been used\\n- Using BETWEEN for exclusive ranges\\n- Data type mismatch in predicates\\n- Properly quoting identifiers\\n- Using the correct number of arguments for functions\\n- Casting to the correct data type\\n- Using the proper columns for joins\\n\\nIf there are any of the above mistakes, rewrite the query. If there are no mistakes, just reproduce the original query.'), llm=ChatOpenAI(client=<class 'openai.api_resources.chat_completion.ChatCompletion'>, model_name='gpt-3.5-turbo-16k', temperature=0.0, openai_api_key='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', openai_api_base='', openai_organization='', openai_proxy='')))>}\n",
            "user_proxy (to chatbot):\n",
            "\n",
            "Describe the table names california_housing_train\n",
            "\n",
            "--------------------------------------------------------------------------------\n",
            "chatbot (to user_proxy):\n",
            "\n",
            "***** Suggested function Call: schema_sql_db *****\n",
            "Arguments: \n",
            "{\n",
            "  \"table_names\": \"california_housing_train\"\n",
            "}\n",
            "**************************************************\n",
            "\n",
            "--------------------------------------------------------------------------------\n",
            "\n",
            ">>>>>>>> EXECUTING FUNCTION schema_sql_db...\n",
            "user_proxy (to chatbot):\n",
            "\n",
            "***** Response from calling function \"schema_sql_db\" *****\n",
            "CREATE TABLE spark_catalog.langchain_example.california_housing_train (\n",
            "  longitude DOUBLE,\n",
            "  latitude DOUBLE,\n",
            "  housing_median_age DOUBLE,\n",
            "  total_rooms DOUBLE,\n",
            "  total_bedrooms DOUBLE,\n",
            "  population DOUBLE,\n",
            "  households DOUBLE,\n",
            "  median_income DOUBLE,\n",
            "  median_house_value DOUBLE)\n",
            ";\n",
            "\n",
            "/*\n",
            "3 rows from california_housing_train table:\n",
            "longitude\tlatitude\thousing_median_age\ttotal_rooms\ttotal_bedrooms\tpopulation\thouseholds\tmedian_income\tmedian_house_value\n",
            "-114.31\t34.19\t15.0\t5612.0\t1283.0\t1015.0\t472.0\t1.4936\t66900.0\n",
            "-114.47\t34.4\t19.0\t7650.0\t1901.0\t1129.0\t463.0\t1.82\t80100.0\n",
            "-114.56\t33.69\t17.0\t720.0\t174.0\t333.0\t117.0\t1.6509\t85700.0\n",
            "*/\n",
            "**********************************************************\n",
            "\n",
            "--------------------------------------------------------------------------------\n",
            "chatbot (to user_proxy):\n",
            "\n",
            "The california_housing_train table has the following schema:\n",
            "\n",
            "- longitude: DOUBLE\n",
            "- latitude: DOUBLE\n",
            "- housing_median_age: DOUBLE\n",
            "- total_rooms: DOUBLE\n",
            "- total_bedrooms: DOUBLE\n",
            "- population: DOUBLE\n",
            "- households: DOUBLE\n",
            "- median_income: DOUBLE\n",
            "- median_house_value: DOUBLE\n",
            "\n",
            "Here are sample rows from the table:\n",
            "\n",
            "| longitude | latitude | housing_median_age | total_rooms | total_bedrooms | population | households | median_income | median_house_value |\n",
            "|-----------|----------|--------------------|-------------|----------------|------------|------------|---------------|--------------------|\n",
            "| -114.31   | 34.19    | 15.0               | 5612.0      | 1283.0         | 1015.0     | 472.0      | 1.4936        | 66900.0            |\n",
            "| -114.47   | 34.4     | 19.0               | 7650.0      | 1901.0         | 1129.0     | 463.0      | 1.82          | 80100.0            |\n",
            "| -114.56   | 33.69    | 17.0               | 720.0       | 174.0          | 333.0      | 117.0      | 1.6509        | 85700.0            |\n",
            "\n",
            "--------------------------------------------------------------------------------\n",
            "user_proxy (to chatbot):\n",
            "\n",
            "\n",
            "\n",
            "--------------------------------------------------------------------------------\n",
            "chatbot (to user_proxy):\n",
            "\n",
            "TERMINATE\n",
            "\n",
            "--------------------------------------------------------------------------------\n"
          ]
        }
      ],
      "source": [
        "\n",
        "# Now use AutoGen with Langchain Tool Bridgre\n",
        "tools = []\n",
        "function_map = {}\n",
        "\n",
        "for tool in toolkit.get_tools(): #debug_toolkit if you want to use tools directly\n",
        "    tool_schema = generate_llm_config(tool)\n",
        "    print(tool_schema)\n",
        "    tools.append(tool_schema)\n",
        "    function_map[tool.name] = tool._run\n",
        "\n",
        "# Construct the llm_config\n",
        "llm_config = {\n",
        "  \"functions\": tools,\n",
        "  \"config_list\": config_list,  # Assuming you have this defined elsewhere\n",
        "  \"request_timeout\": 120,\n",
        "}\n",
        "\n",
        "user_proxy = autogen.UserProxyAgent(\n",
        "    name=\"user_proxy\",\n",
        "    is_termination_msg=lambda x: x.get(\"content\", \"\") and x.get(\"content\", \"\").rstrip().endswith(\"TERMINATE\"),\n",
        "    human_input_mode=\"NEVER\",\n",
        "    max_consecutive_auto_reply=10,\n",
        "    code_execution_config={\"work_dir\": \"coding\"},\n",
        ")\n",
        "\n",
        "print(function_map)\n",
        "\n",
        "# Register the tool and start the conversation\n",
        "user_proxy.register_function(\n",
        "    function_map = function_map\n",
        ")\n",
        "\n",
        "chatbot = autogen.AssistantAgent(\n",
        "    name=\"chatbot\",\n",
        "    system_message=\"For coding tasks, only use the functions you have been provided with. Reply TERMINATE when the task is done.\",\n",
        "    llm_config=llm_config,\n",
        ")\n",
        "\n",
        "user_proxy.initiate_chat(\n",
        "    chatbot,\n",
        "    message=\"Describe the table names california_housing_train\",\n",
        "    llm_config=llm_config,\n",
        ")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "fded8207",
      "metadata": {},
      "outputs": [],
      "source": []
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "b35e279e",
      "metadata": {},
      "outputs": [],
      "source": []
    }
  ],
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "display_name": "flaml_dev",
      "language": "python",
      "name": "python3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.9.17"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 5
}