File size: 45,382 Bytes
9828b0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "ae1f50ec",
"metadata": {
"id": "ae1f50ec"
},
"source": [
"<a href=\"https://colab.research.google.com/github/microsoft/autogen/blob/main/notebook/agentchat_function_call.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "9a71fa36",
"metadata": {
"id": "9a71fa36"
},
"source": [
"# Auto Generated Agent Chat: Task Solving with Provided Tools as Functions\n",
"\n",
"AutoGen offers conversable agents powered by LLM, tool or human, which can be used to perform tasks collectively via automated chat. This framwork allows tool use and human participance through multi-agent conversation. Please find documentation about this feature [here](https://microsoft.github.io/autogen/docs/Use-Cases/agent_chat).\n",
"\n",
"In this notebook, we demonstrate how to use `AssistantAgent` and `UserProxyAgent` to make function calls with the new feature of OpenAI models (in model version 0613). A specified prompt and function configs need to be passed to `AssistantAgent` to initialize the agent. The corresponding functions need to be passed to `UserProxyAgent`, which will be responsible for executing any function calls made by `AssistantAgent`. Besides this requirement of matching descriptions with functions, we recommend checking the system message in the `AssistantAgent` to make sure the instructions align with the function call descriptions.\n",
"\n",
"## Requirements\n",
"\n",
"AutoGen requires `Python>=3.8`. To run this notebook example, please install the [mathchat] option since we will import functions from `MathUserProxyAgent`:\n",
"```bash\n",
"pip install \"pyautogen[mathchat]\"\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2b803c17",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "2b803c17",
"outputId": "2e12aa3f-e46c-4b82-cc2e-1495f70a2961"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: pyautogen[mathchat]~=0.1.0 in /usr/local/lib/python3.10/dist-packages (0.1.4)\n",
"Requirement already satisfied: diskcache in /usr/local/lib/python3.10/dist-packages (from pyautogen[mathchat]~=0.1.0) (5.6.3)\n",
"Requirement already satisfied: flaml in /usr/local/lib/python3.10/dist-packages (from pyautogen[mathchat]~=0.1.0) (2.1.0)\n",
"Requirement already satisfied: openai in /usr/local/lib/python3.10/dist-packages (from pyautogen[mathchat]~=0.1.0) (0.28.1)\n",
"Requirement already satisfied: termcolor in /usr/local/lib/python3.10/dist-packages (from pyautogen[mathchat]~=0.1.0) (2.3.0)\n",
"Requirement already satisfied: pydantic==1.10.9 in /usr/local/lib/python3.10/dist-packages (from pyautogen[mathchat]~=0.1.0) (1.10.9)\n",
"Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from pyautogen[mathchat]~=0.1.0) (1.12)\n",
"Requirement already satisfied: wolframalpha in /usr/local/lib/python3.10/dist-packages (from pyautogen[mathchat]~=0.1.0) (5.0.0)\n",
"Requirement already satisfied: typing-extensions>=4.2.0 in /usr/local/lib/python3.10/dist-packages (from pydantic==1.10.9->pyautogen[mathchat]~=0.1.0) (4.5.0)\n",
"Requirement already satisfied: NumPy>=1.17.0rc1 in /usr/local/lib/python3.10/dist-packages (from flaml->pyautogen[mathchat]~=0.1.0) (1.23.5)\n",
"Requirement already satisfied: requests>=2.20 in /usr/local/lib/python3.10/dist-packages (from openai->pyautogen[mathchat]~=0.1.0) (2.31.0)\n",
"Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from openai->pyautogen[mathchat]~=0.1.0) (4.66.1)\n",
"Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from openai->pyautogen[mathchat]~=0.1.0) (3.8.5)\n",
"Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->pyautogen[mathchat]~=0.1.0) (1.3.0)\n",
"Requirement already satisfied: xmltodict in /usr/local/lib/python3.10/dist-packages (from wolframalpha->pyautogen[mathchat]~=0.1.0) (0.13.0)\n",
"Requirement already satisfied: more-itertools in /usr/local/lib/python3.10/dist-packages (from wolframalpha->pyautogen[mathchat]~=0.1.0) (10.1.0)\n",
"Requirement already satisfied: jaraco.context in /usr/local/lib/python3.10/dist-packages (from wolframalpha->pyautogen[mathchat]~=0.1.0) (4.3.0)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.20->openai->pyautogen[mathchat]~=0.1.0) (3.2.0)\n",
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.20->openai->pyautogen[mathchat]~=0.1.0) (3.4)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.20->openai->pyautogen[mathchat]~=0.1.0) (2.0.4)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.20->openai->pyautogen[mathchat]~=0.1.0) (2023.7.22)\n",
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai->pyautogen[mathchat]~=0.1.0) (23.1.0)\n",
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai->pyautogen[mathchat]~=0.1.0) (6.0.4)\n",
"Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai->pyautogen[mathchat]~=0.1.0) (4.0.3)\n",
"Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai->pyautogen[mathchat]~=0.1.0) (1.9.2)\n",
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai->pyautogen[mathchat]~=0.1.0) (1.4.0)\n",
"Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->openai->pyautogen[mathchat]~=0.1.0) (1.3.1)\n"
]
}
],
"source": [
"%pip install \"pyautogen[mathchat]~=0.1.0\""
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "5ebd2397",
"metadata": {
"id": "5ebd2397"
},
"source": [
"## Set your API Endpoint\n",
"\n",
"The [`config_list_from_models`](https://microsoft.github.io/autogen/docs/reference/oai/openai_utils#config_list_from_models) function tries to create a list of configurations using Azure OpenAI endpoints and OpenAI endpoints for the provided list of models. It assumes the api keys and api bases are stored in the corresponding environment variables or local txt files:\n",
"\n",
"- OpenAI API key: os.environ[\"OPENAI_API_KEY\"] or `openai_api_key_file=\"key_openai.txt\"`.\n",
"- Azure OpenAI API key: os.environ[\"AZURE_OPENAI_API_KEY\"] or `aoai_api_key_file=\"key_aoai.txt\"`. Multiple keys can be stored, one per line.\n",
"- Azure OpenAI API base: os.environ[\"AZURE_OPENAI_API_BASE\"] or `aoai_api_base_file=\"base_aoai.txt\"`. Multiple bases can be stored, one per line.\n",
"\n",
"It's OK to have only the OpenAI API key, or only the Azure OpenAI API key + base.\n",
"If you open this notebook in google colab, you can upload your files by click the file icon on the left panel and then choose \"upload file\" icon.\n",
"\n",
"The following code excludes Azure OpenAI endpoints from the config list because some endpoints don't support functions yet. Remove the `exclude` argument if they do."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dca301a4",
"metadata": {
"id": "dca301a4"
},
"outputs": [],
"source": [
"import autogen\n",
"\n",
"config_list = autogen.config_list_from_models(model_list=[\"gpt-4\", \"gpt-3.5-turbo\", \"gpt-3.5-turbo-16k\"], exclude=\"aoai\", openai_api_key_file=\"key_openai.txt\")\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "2b9526e7",
"metadata": {
"id": "2b9526e7"
},
"source": [
"## Making Function Calls\n",
"\n",
"In this example, we demonstrate function call execution with `AssistantAgent` and `UserProxyAgent`. With the default system prompt of `AssistantAgent`, we allow the LLM assistant to perform tasks with code, and the `UserProxyAgent` would extract code blocks from the LLM response and execute them. With the new \"function_call\" feature, we define functions and specify the description of the function in the OpenAI config for the `AssistantAgent`. Then we register the functions in `UserProxyAgent`.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ngpFkWh5ad9M",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ngpFkWh5ad9M",
"outputId": "d33b51c6-5dfe-402d-dce4-6b40fca85d3d"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: Langchain in /usr/local/lib/python3.10/dist-packages (0.0.305)\n",
"Requirement already satisfied: PyYAML>=5.3 in /usr/local/lib/python3.10/dist-packages (from Langchain) (6.0.1)\n",
"Requirement already satisfied: SQLAlchemy<3,>=1.4 in /usr/local/lib/python3.10/dist-packages (from Langchain) (2.0.20)\n",
"Requirement already satisfied: aiohttp<4.0.0,>=3.8.3 in /usr/local/lib/python3.10/dist-packages (from Langchain) (3.8.5)\n",
"Requirement already satisfied: anyio<4.0 in /usr/local/lib/python3.10/dist-packages (from Langchain) (3.7.1)\n",
"Requirement already satisfied: async-timeout<5.0.0,>=4.0.0 in /usr/local/lib/python3.10/dist-packages (from Langchain) (4.0.3)\n",
"Requirement already satisfied: dataclasses-json<0.7,>=0.5.7 in /usr/local/lib/python3.10/dist-packages (from Langchain) (0.6.1)\n",
"Requirement already satisfied: jsonpatch<2.0,>=1.33 in /usr/local/lib/python3.10/dist-packages (from Langchain) (1.33)\n",
"Requirement already satisfied: langsmith<0.1.0,>=0.0.38 in /usr/local/lib/python3.10/dist-packages (from Langchain) (0.0.41)\n",
"Requirement already satisfied: numexpr<3.0.0,>=2.8.4 in /usr/local/lib/python3.10/dist-packages (from Langchain) (2.8.5)\n",
"Requirement already satisfied: numpy<2,>=1 in /usr/local/lib/python3.10/dist-packages (from Langchain) (1.23.5)\n",
"Requirement already satisfied: pydantic<3,>=1 in /usr/local/lib/python3.10/dist-packages (from Langchain) (1.10.9)\n",
"Requirement already satisfied: requests<3,>=2 in /usr/local/lib/python3.10/dist-packages (from Langchain) (2.31.0)\n",
"Requirement already satisfied: tenacity<9.0.0,>=8.1.0 in /usr/local/lib/python3.10/dist-packages (from Langchain) (8.2.3)\n",
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->Langchain) (23.1.0)\n",
"Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->Langchain) (3.2.0)\n",
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->Langchain) (6.0.4)\n",
"Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->Langchain) (1.9.2)\n",
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->Langchain) (1.4.0)\n",
"Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp<4.0.0,>=3.8.3->Langchain) (1.3.1)\n",
"Requirement already satisfied: idna>=2.8 in /usr/local/lib/python3.10/dist-packages (from anyio<4.0->Langchain) (3.4)\n",
"Requirement already satisfied: sniffio>=1.1 in /usr/local/lib/python3.10/dist-packages (from anyio<4.0->Langchain) (1.3.0)\n",
"Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<4.0->Langchain) (1.1.3)\n",
"Requirement already satisfied: marshmallow<4.0.0,>=3.18.0 in /usr/local/lib/python3.10/dist-packages (from dataclasses-json<0.7,>=0.5.7->Langchain) (3.20.1)\n",
"Requirement already satisfied: typing-inspect<1,>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from dataclasses-json<0.7,>=0.5.7->Langchain) (0.9.0)\n",
"Requirement already satisfied: jsonpointer>=1.9 in /usr/local/lib/python3.10/dist-packages (from jsonpatch<2.0,>=1.33->Langchain) (2.4)\n",
"Requirement already satisfied: typing-extensions>=4.2.0 in /usr/local/lib/python3.10/dist-packages (from pydantic<3,>=1->Langchain) (4.5.0)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2->Langchain) (2.0.4)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2->Langchain) (2023.7.22)\n",
"Requirement already satisfied: greenlet!=0.4.17 in /usr/local/lib/python3.10/dist-packages (from SQLAlchemy<3,>=1.4->Langchain) (2.0.2)\n",
"Requirement already satisfied: packaging>=17.0 in /usr/local/lib/python3.10/dist-packages (from marshmallow<4.0.0,>=3.18.0->dataclasses-json<0.7,>=0.5.7->Langchain) (23.1)\n",
"Requirement already satisfied: mypy-extensions>=0.3.0 in /usr/local/lib/python3.10/dist-packages (from typing-inspect<1,>=0.4.0->dataclasses-json<0.7,>=0.5.7->Langchain) (1.0.0)\n"
]
}
],
"source": [
"%pip install Langchain"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "qCzNbbVajvpc",
"metadata": {
"id": "qCzNbbVajvpc"
},
"outputs": [],
"source": [
"# Import things that are needed generically\n",
"from langchain.pydantic_v1 import BaseModel, Field\n",
"from langchain.tools import BaseTool, StructuredTool, Tool, tool\n",
"from typing import Optional, Type\n",
"import math\n",
"\n",
"class CircumferenceToolInput(BaseModel):\n",
" radius: float = Field()\n",
"\n",
"class CircumferenceTool(BaseTool):\n",
" name = \"circumference_calculator\"\n",
" description = \"Use this tool when you need to calculate a circumference using the radius of a circle\"\n",
" args_schema: Type[BaseModel] = CircumferenceToolInput\n",
"\n",
" def _run(self, radius: float):\n",
" return float(radius) * 2.0 * math.pi"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "COlL5_98atDs",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "COlL5_98atDs",
"outputId": "24ce236d-8993-4a69-99e2-65453574d61e"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'functions': [{'name': 'circumference_calculator', 'description': 'Use this tool when you need to calculate a circumference using the radius of a circle', 'parameters': {'type': 'object', 'properties': {'radius': {'title': 'Radius', 'type': 'number'}}, 'required': []}}, {'name': 'read_file', 'description': 'Read file from disk', 'parameters': {'type': 'object', 'properties': {'file_path': {'title': 'File Path', 'description': 'name of file', 'type': 'string'}}, 'required': []}}], 'config_list': [{'api_key': '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', 'model': 'gpt-4'}, {'api_key': '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', 'model': 'gpt-3.5-turbo'}, {'api_key': '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', 'model': 'gpt-3.5-turbo-16k'}], 'request_timeout': 120}\n",
"user_proxy (to chatbot):\n",
"\n",
"Read the file with the path 'Test.txt', then calculate the circumference of a circle that has a radius of that files contents.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"chatbot (to user_proxy):\n",
"\n",
"***** Suggested function Call: read_file *****\n",
"Arguments: \n",
"{\n",
" \"file_path\": \"Test.txt\"\n",
"}\n",
"**********************************************\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\n",
">>>>>>>> EXECUTING FUNCTION read_file...\n",
"user_proxy (to chatbot):\n",
"\n",
"***** Response from calling function \"read_file\" *****\n",
"7.81mm\n",
"******************************************************\n",
"\n",
"--------------------------------------------------------------------------------\n",
"chatbot (to user_proxy):\n",
"\n",
"***** Suggested function Call: circumference_calculator *****\n",
"Arguments: \n",
"{\n",
" \"radius\": 7.81\n",
"}\n",
"*************************************************************\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\n",
">>>>>>>> EXECUTING FUNCTION circumference_calculator...\n",
"user_proxy (to chatbot):\n",
"\n",
"***** Response from calling function \"circumference_calculator\" *****\n",
"49.071677249072565\n",
"*********************************************************************\n",
"\n",
"--------------------------------------------------------------------------------\n",
"chatbot (to user_proxy):\n",
"\n",
"The circumference of a circle with a radius of 7.81mm is approximately 49.071mm.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"user_proxy (to chatbot):\n",
"\n",
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"chatbot (to user_proxy):\n",
"\n",
"TERMINATE\n",
"\n",
"--------------------------------------------------------------------------------\n"
]
}
],
"source": [
"from langchain.tools.file_management.read import ReadFileTool\n",
"\n",
"# Define a function to generate llm_config from a LangChain tool\n",
"def generate_llm_config(tool):\n",
" # Define the function schema based on the tool's args_schema\n",
" function_schema = {\n",
" \"name\": tool.name.lower().replace (' ', '_'),\n",
" \"description\": tool.description,\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {},\n",
" \"required\": [],\n",
" },\n",
" }\n",
"\n",
" if tool.args is not None:\n",
" function_schema[\"parameters\"][\"properties\"] = tool.args\n",
"\n",
" return function_schema\n",
"\n",
"# Instantiate the ReadFileTool\n",
"read_file_tool = ReadFileTool()\n",
"custom_tool = CircumferenceTool()\n",
"\n",
"# Construct the llm_config\n",
"llm_config = {\n",
" #Generate functions config for the Tool\n",
" \"functions\":[\n",
" generate_llm_config(custom_tool),\n",
" generate_llm_config(read_file_tool),\n",
" ],\n",
" \"config_list\": config_list, # Assuming you have this defined elsewhere\n",
" \"request_timeout\": 120,\n",
"}\n",
"\n",
"print(llm_config)\n",
"\n",
"user_proxy = autogen.UserProxyAgent(\n",
" name=\"user_proxy\",\n",
" is_termination_msg=lambda x: x.get(\"content\", \"\") and x.get(\"content\", \"\").rstrip().endswith(\"TERMINATE\"),\n",
" human_input_mode=\"NEVER\",\n",
" max_consecutive_auto_reply=10,\n",
" code_execution_config={\"work_dir\": \"coding\"},\n",
")\n",
"\n",
"# Register the tool and start the conversation\n",
"user_proxy.register_function(\n",
" function_map={\n",
" custom_tool.name: custom_tool._run,\n",
" read_file_tool.name: read_file_tool._run,\n",
" }\n",
")\n",
"\n",
"chatbot = autogen.AssistantAgent(\n",
" name=\"chatbot\",\n",
" system_message=\"For coding tasks, only use the functions you have been provided with. Reply TERMINATE when the task is done.\",\n",
" llm_config=llm_config,\n",
")\n",
"\n",
"user_proxy.initiate_chat(\n",
" chatbot,\n",
" message=\"Read the file with the path 'Test.txt', then calculate the circumference of a circle that has a radius of that files contents.\", #\" 7.81mm\" in the file\n",
" llm_config=llm_config,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "Y-ozf9EFCegw",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Y-ozf9EFCegw",
"outputId": "db7b73a8-6129-4dfb-9d5c-ac3536f310d7"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: pyspark in /usr/local/lib/python3.10/dist-packages (3.5.0)\n",
"Requirement already satisfied: py4j==0.10.9.7 in /usr/local/lib/python3.10/dist-packages (from pyspark) (0.10.9.7)\n"
]
}
],
"source": [
"%pip install pyspark"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7iFp-Sm4CYq_",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "7iFp-Sm4CYq_",
"outputId": "2e1a2a70-53e6-4896-9232-63db6d097d63"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"+---------+--------+------------------+-----------+--------------+----------+----------+-------------+------------------+\n",
"|longitude|latitude|housing_median_age|total_rooms|total_bedrooms|population|households|median_income|median_house_value|\n",
"+---------+--------+------------------+-----------+--------------+----------+----------+-------------+------------------+\n",
"| -114.31| 34.19| 15.0| 5612.0| 1283.0| 1015.0| 472.0| 1.4936| 66900.0|\n",
"| -114.47| 34.4| 19.0| 7650.0| 1901.0| 1129.0| 463.0| 1.82| 80100.0|\n",
"| -114.56| 33.69| 17.0| 720.0| 174.0| 333.0| 117.0| 1.6509| 85700.0|\n",
"| -114.57| 33.64| 14.0| 1501.0| 337.0| 515.0| 226.0| 3.1917| 73400.0|\n",
"| -114.57| 33.57| 20.0| 1454.0| 326.0| 624.0| 262.0| 1.925| 65500.0|\n",
"| -114.58| 33.63| 29.0| 1387.0| 236.0| 671.0| 239.0| 3.3438| 74000.0|\n",
"| -114.58| 33.61| 25.0| 2907.0| 680.0| 1841.0| 633.0| 2.6768| 82400.0|\n",
"| -114.59| 34.83| 41.0| 812.0| 168.0| 375.0| 158.0| 1.7083| 48500.0|\n",
"| -114.59| 33.61| 34.0| 4789.0| 1175.0| 3134.0| 1056.0| 2.1782| 58400.0|\n",
"| -114.6| 34.83| 46.0| 1497.0| 309.0| 787.0| 271.0| 2.1908| 48100.0|\n",
"| -114.6| 33.62| 16.0| 3741.0| 801.0| 2434.0| 824.0| 2.6797| 86500.0|\n",
"| -114.6| 33.6| 21.0| 1988.0| 483.0| 1182.0| 437.0| 1.625| 62000.0|\n",
"| -114.61| 34.84| 48.0| 1291.0| 248.0| 580.0| 211.0| 2.1571| 48600.0|\n",
"| -114.61| 34.83| 31.0| 2478.0| 464.0| 1346.0| 479.0| 3.212| 70400.0|\n",
"| -114.63| 32.76| 15.0| 1448.0| 378.0| 949.0| 300.0| 0.8585| 45000.0|\n",
"| -114.65| 34.89| 17.0| 2556.0| 587.0| 1005.0| 401.0| 1.6991| 69100.0|\n",
"| -114.65| 33.6| 28.0| 1678.0| 322.0| 666.0| 256.0| 2.9653| 94900.0|\n",
"| -114.65| 32.79| 21.0| 44.0| 33.0| 64.0| 27.0| 0.8571| 25000.0|\n",
"| -114.66| 32.74| 17.0| 1388.0| 386.0| 775.0| 320.0| 1.2049| 44000.0|\n",
"| -114.67| 33.92| 17.0| 97.0| 24.0| 29.0| 15.0| 1.2656| 27500.0|\n",
"+---------+--------+------------------+-----------+--------------+----------+----------+-------------+------------------+\n",
"only showing top 20 rows\n",
"\n"
]
}
],
"source": [
"#Starndard Langchain example\n",
"from langchain.agents import create_spark_sql_agent\n",
"from langchain.agents.agent_toolkits import SparkSQLToolkit\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.utilities.spark_sql import SparkSQL\n",
"from pyspark.sql import SparkSession\n",
"\n",
"spark = SparkSession.builder.getOrCreate()\n",
"schema = \"langchain_example\"\n",
"spark.sql(f\"CREATE DATABASE IF NOT EXISTS {schema}\")\n",
"spark.sql(f\"USE {schema}\")\n",
"csv_file_path = \"./sample_data/california_housing_train.csv\"\n",
"table = \"california_housing_train\"\n",
"spark.read.csv(csv_file_path, header=True, inferSchema=True).write.option(\"path\", \"file:/content/spark-warehouse/langchain_example.db/california_housing_train\").mode(\"overwrite\").saveAsTable(table)\n",
"spark.table(table).show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "iLtSTHoJD7Jn",
"metadata": {
"id": "iLtSTHoJD7Jn"
},
"outputs": [],
"source": [
"# Note, you can also connect to Spark via Spark connect. For example:\n",
"# db = SparkSQL.from_uri(\"sc://localhost:15002\", schema=schema)\n",
"spark_sql = SparkSQL(schema=schema)\n",
"llm = ChatOpenAI(temperature=0, model=\"gpt-3.5-turbo-16k\")\n",
"toolkit = SparkSQLToolkit(db=spark_sql, llm=llm)\n",
"agent_executor = create_spark_sql_agent(llm=llm, toolkit=toolkit, verbose=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "VzqNYlVjCqQa",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 608
},
"id": "VzqNYlVjCqQa",
"outputId": "dd4de772-7b0c-4650-d106-c83d4593158e"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
"\u001b[32;1m\u001b[1;3mAction: list_tables_sql_db\n",
"Action Input: \"\"\u001b[0m\n",
"Observation: \u001b[38;5;200m\u001b[1;3mcalifornia_housing_train\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3mI see that there is a table called \"california_housing_train\" in the database. I can use the \"schema_sql_db\" tool to get more information about this table.\n",
"Action: schema_sql_db\n",
"Action Input: \"california_housing_train\"\u001b[0m\n",
"Observation: \u001b[33;1m\u001b[1;3mCREATE TABLE spark_catalog.langchain_example.california_housing_train (\n",
" longitude DOUBLE,\n",
" latitude DOUBLE,\n",
" housing_median_age DOUBLE,\n",
" total_rooms DOUBLE,\n",
" total_bedrooms DOUBLE,\n",
" population DOUBLE,\n",
" households DOUBLE,\n",
" median_income DOUBLE,\n",
" median_house_value DOUBLE)\n",
";\n",
"\n",
"/*\n",
"3 rows from california_housing_train table:\n",
"longitude\tlatitude\thousing_median_age\ttotal_rooms\ttotal_bedrooms\tpopulation\thouseholds\tmedian_income\tmedian_house_value\n",
"-114.31\t34.19\t15.0\t5612.0\t1283.0\t1015.0\t472.0\t1.4936\t66900.0\n",
"-114.47\t34.4\t19.0\t7650.0\t1901.0\t1129.0\t463.0\t1.82\t80100.0\n",
"-114.56\t33.69\t17.0\t720.0\t174.0\t333.0\t117.0\t1.6509\t85700.0\n",
"*/\u001b[0m\n",
"Thought:\u001b[32;1m\u001b[1;3mThe \"california_housing_train\" table has the following columns: longitude, latitude, housing_median_age, total_rooms, total_bedrooms, population, households, median_income, and median_house_value. It contains information about housing in California. I can now answer the question.\n",
"Action: None\n",
"Final Answer: The \"california_housing_train\" table has the following columns: longitude, latitude, housing_median_age, total_rooms, total_bedrooms, population, households, median_income, and median_house_value.\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "string"
},
"text/plain": [
"'The \"california_housing_train\" table has the following columns: longitude, latitude, housing_median_age, total_rooms, total_bedrooms, population, households, median_income, and median_house_value.'"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Starndard Langchain example\n",
"agent_executor.run(\"Describe the california_housing_train table\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d94d45a9",
"metadata": {},
"outputs": [],
"source": [
"# LangChain direct tool usage instead of toolkit example\n",
"# from langchain.tools.spark_sql.tool import (\n",
"# InfoSparkSQLTool,\n",
"# ListSparkSQLTool,\n",
"# QueryCheckerTool,\n",
"# QuerySparkSQLTool,\n",
"# )\n",
"# debug_toolkit = [\n",
"# QuerySparkSQLTool(db=spark_sql),\n",
"# InfoSparkSQLTool(db=spark_sql),\n",
"# ListSparkSQLTool(db=spark_sql),\n",
"# QueryCheckerTool(db=spark_sql, llm=llm),\n",
"#]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "r7PFvDS7Ev-E",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "r7PFvDS7Ev-E",
"outputId": "53d9c45d-058e-4e37-ba73-556591aaab42"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'name': 'query_sql_db', 'description': '\\n Input to this tool is a detailed and correct SQL query, output is a result from the Spark SQL.\\n If the query is not correct, an error message will be returned.\\n If an error is returned, rewrite the query, check the query, and try again.\\n ', 'parameters': {'type': 'object', 'properties': {'query': {'title': 'Query', 'type': 'string'}}, 'required': []}}\n",
"{'name': 'schema_sql_db', 'description': '\\n Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables.\\n Be sure that the tables actually exist by calling list_tables_sql_db first!\\n\\n Example Input: \"table1, table2, table3\"\\n ', 'parameters': {'type': 'object', 'properties': {'table_names': {'title': 'Table Names', 'type': 'string'}}, 'required': []}}\n",
"{'name': 'list_tables_sql_db', 'description': 'Input is an empty string, output is a comma separated list of tables in the Spark SQL.', 'parameters': {'type': 'object', 'properties': {'tool_input': {'title': 'Tool Input', 'default': '', 'type': 'string'}}, 'required': []}}\n",
"{'name': 'query_checker_sql_db', 'description': '\\n Use this tool to double check if your query is correct before executing it.\\n Always use this tool before executing a query with query_sql_db!\\n ', 'parameters': {'type': 'object', 'properties': {'query': {'title': 'Query', 'type': 'string'}}, 'required': []}}\n",
"{'query_sql_db': <bound method QuerySparkSQLTool._run of QuerySparkSQLTool(name='query_sql_db', description='\\n Input to this tool is a detailed and correct SQL query, output is a result from the Spark SQL.\\n If the query is not correct, an error message will be returned.\\n If an error is returned, rewrite the query, check the query, and try again.\\n ', args_schema=None, return_direct=False, verbose=False, callbacks=None, callback_manager=None, tags=None, metadata=None, handle_tool_error=False, db=<langchain.utilities.spark_sql.SparkSQL object at 0x79eb20467580>)>, 'schema_sql_db': <bound method InfoSparkSQLTool._run of InfoSparkSQLTool(name='schema_sql_db', description='\\n Input to this tool is a comma-separated list of tables, output is the schema and sample rows for those tables.\\n Be sure that the tables actually exist by calling list_tables_sql_db first!\\n\\n Example Input: \"table1, table2, table3\"\\n ', args_schema=None, return_direct=False, verbose=False, callbacks=None, callback_manager=None, tags=None, metadata=None, handle_tool_error=False, db=<langchain.utilities.spark_sql.SparkSQL object at 0x79eb20467580>)>, 'list_tables_sql_db': <bound method ListSparkSQLTool._run of ListSparkSQLTool(name='list_tables_sql_db', description='Input is an empty string, output is a comma separated list of tables in the Spark SQL.', args_schema=None, return_direct=False, verbose=False, callbacks=None, callback_manager=None, tags=None, metadata=None, handle_tool_error=False, db=<langchain.utilities.spark_sql.SparkSQL object at 0x79eb20467580>)>, 'query_checker_sql_db': <bound method QueryCheckerTool._run of QueryCheckerTool(name='query_checker_sql_db', description='\\n Use this tool to double check if your query is correct before executing it.\\n Always use this tool before executing a query with query_sql_db!\\n ', args_schema=None, return_direct=False, verbose=False, callbacks=None, callback_manager=None, tags=None, metadata=None, handle_tool_error=False, db=<langchain.utilities.spark_sql.SparkSQL object at 0x79eb20467580>, template='\\n{query}\\nDouble check the Spark SQL query above for common mistakes, including:\\n- Using NOT IN with NULL values\\n- Using UNION when UNION ALL should have been used\\n- Using BETWEEN for exclusive ranges\\n- Data type mismatch in predicates\\n- Properly quoting identifiers\\n- Using the correct number of arguments for functions\\n- Casting to the correct data type\\n- Using the proper columns for joins\\n\\nIf there are any of the above mistakes, rewrite the query. If there are no mistakes, just reproduce the original query.', llm=ChatOpenAI(client=<class 'openai.api_resources.chat_completion.ChatCompletion'>, model_name='gpt-3.5-turbo-16k', temperature=0.0, openai_api_key='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', openai_api_base='', openai_organization='', openai_proxy=''), llm_chain=LLMChain(prompt=PromptTemplate(input_variables=['query'], template='\\n{query}\\nDouble check the Spark SQL query above for common mistakes, including:\\n- Using NOT IN with NULL values\\n- Using UNION when UNION ALL should have been used\\n- Using BETWEEN for exclusive ranges\\n- Data type mismatch in predicates\\n- Properly quoting identifiers\\n- Using the correct number of arguments for functions\\n- Casting to the correct data type\\n- Using the proper columns for joins\\n\\nIf there are any of the above mistakes, rewrite the query. If there are no mistakes, just reproduce the original query.'), llm=ChatOpenAI(client=<class 'openai.api_resources.chat_completion.ChatCompletion'>, model_name='gpt-3.5-turbo-16k', temperature=0.0, openai_api_key='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', openai_api_base='', openai_organization='', openai_proxy='')))>}\n",
"user_proxy (to chatbot):\n",
"\n",
"Describe the table names california_housing_train\n",
"\n",
"--------------------------------------------------------------------------------\n",
"chatbot (to user_proxy):\n",
"\n",
"***** Suggested function Call: schema_sql_db *****\n",
"Arguments: \n",
"{\n",
" \"table_names\": \"california_housing_train\"\n",
"}\n",
"**************************************************\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\n",
">>>>>>>> EXECUTING FUNCTION schema_sql_db...\n",
"user_proxy (to chatbot):\n",
"\n",
"***** Response from calling function \"schema_sql_db\" *****\n",
"CREATE TABLE spark_catalog.langchain_example.california_housing_train (\n",
" longitude DOUBLE,\n",
" latitude DOUBLE,\n",
" housing_median_age DOUBLE,\n",
" total_rooms DOUBLE,\n",
" total_bedrooms DOUBLE,\n",
" population DOUBLE,\n",
" households DOUBLE,\n",
" median_income DOUBLE,\n",
" median_house_value DOUBLE)\n",
";\n",
"\n",
"/*\n",
"3 rows from california_housing_train table:\n",
"longitude\tlatitude\thousing_median_age\ttotal_rooms\ttotal_bedrooms\tpopulation\thouseholds\tmedian_income\tmedian_house_value\n",
"-114.31\t34.19\t15.0\t5612.0\t1283.0\t1015.0\t472.0\t1.4936\t66900.0\n",
"-114.47\t34.4\t19.0\t7650.0\t1901.0\t1129.0\t463.0\t1.82\t80100.0\n",
"-114.56\t33.69\t17.0\t720.0\t174.0\t333.0\t117.0\t1.6509\t85700.0\n",
"*/\n",
"**********************************************************\n",
"\n",
"--------------------------------------------------------------------------------\n",
"chatbot (to user_proxy):\n",
"\n",
"The california_housing_train table has the following schema:\n",
"\n",
"- longitude: DOUBLE\n",
"- latitude: DOUBLE\n",
"- housing_median_age: DOUBLE\n",
"- total_rooms: DOUBLE\n",
"- total_bedrooms: DOUBLE\n",
"- population: DOUBLE\n",
"- households: DOUBLE\n",
"- median_income: DOUBLE\n",
"- median_house_value: DOUBLE\n",
"\n",
"Here are sample rows from the table:\n",
"\n",
"| longitude | latitude | housing_median_age | total_rooms | total_bedrooms | population | households | median_income | median_house_value |\n",
"|-----------|----------|--------------------|-------------|----------------|------------|------------|---------------|--------------------|\n",
"| -114.31 | 34.19 | 15.0 | 5612.0 | 1283.0 | 1015.0 | 472.0 | 1.4936 | 66900.0 |\n",
"| -114.47 | 34.4 | 19.0 | 7650.0 | 1901.0 | 1129.0 | 463.0 | 1.82 | 80100.0 |\n",
"| -114.56 | 33.69 | 17.0 | 720.0 | 174.0 | 333.0 | 117.0 | 1.6509 | 85700.0 |\n",
"\n",
"--------------------------------------------------------------------------------\n",
"user_proxy (to chatbot):\n",
"\n",
"\n",
"\n",
"--------------------------------------------------------------------------------\n",
"chatbot (to user_proxy):\n",
"\n",
"TERMINATE\n",
"\n",
"--------------------------------------------------------------------------------\n"
]
}
],
"source": [
"\n",
"# Now use AutoGen with Langchain Tool Bridgre\n",
"tools = []\n",
"function_map = {}\n",
"\n",
"for tool in toolkit.get_tools(): #debug_toolkit if you want to use tools directly\n",
" tool_schema = generate_llm_config(tool)\n",
" print(tool_schema)\n",
" tools.append(tool_schema)\n",
" function_map[tool.name] = tool._run\n",
"\n",
"# Construct the llm_config\n",
"llm_config = {\n",
" \"functions\": tools,\n",
" \"config_list\": config_list, # Assuming you have this defined elsewhere\n",
" \"request_timeout\": 120,\n",
"}\n",
"\n",
"user_proxy = autogen.UserProxyAgent(\n",
" name=\"user_proxy\",\n",
" is_termination_msg=lambda x: x.get(\"content\", \"\") and x.get(\"content\", \"\").rstrip().endswith(\"TERMINATE\"),\n",
" human_input_mode=\"NEVER\",\n",
" max_consecutive_auto_reply=10,\n",
" code_execution_config={\"work_dir\": \"coding\"},\n",
")\n",
"\n",
"print(function_map)\n",
"\n",
"# Register the tool and start the conversation\n",
"user_proxy.register_function(\n",
" function_map = function_map\n",
")\n",
"\n",
"chatbot = autogen.AssistantAgent(\n",
" name=\"chatbot\",\n",
" system_message=\"For coding tasks, only use the functions you have been provided with. Reply TERMINATE when the task is done.\",\n",
" llm_config=llm_config,\n",
")\n",
"\n",
"user_proxy.initiate_chat(\n",
" chatbot,\n",
" message=\"Describe the table names california_housing_train\",\n",
" llm_config=llm_config,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fded8207",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "b35e279e",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "flaml_dev",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.17"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|