File size: 6,726 Bytes
653dc95
 
 
 
 
 
 
 
 
33ea879
653dc95
 
27cf0c7
 
653dc95
 
 
27cf0c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
653dc95
 
 
 
 
 
 
 
 
 
 
 
27cf0c7
653dc95
 
 
 
 
 
27cf0c7
653dc95
 
 
 
 
 
 
 
 
 
 
 
27cf0c7
 
653dc95
 
 
 
 
 
 
 
 
 
 
 
 
 
27cf0c7
653dc95
 
 
27cf0c7
653dc95
27cf0c7
653dc95
 
 
 
27cf0c7
f9ed6a5
27cf0c7
653dc95
 
 
 
 
 
 
 
 
 
 
 
 
 
27cf0c7
653dc95
 
 
 
 
 
 
27cf0c7
653dc95
27cf0c7
 
653dc95
 
 
 
 
 
 
 
 
27cf0c7
653dc95
 
 
 
 
 
 
 
 
 
 
 
 
27cf0c7
653dc95
 
 
27cf0c7
653dc95
 
 
27cf0c7
653dc95
 
 
 
 
 
 
 
 
19b4090
653dc95
27cf0c7
 
 
33ea879
653dc95
 
33ea879
653dc95
 
 
27cf0c7
 
653dc95
 
 
 
 
 
 
 
 
 
27cf0c7
 
 
653dc95
 
 
 
27cf0c7
653dc95
2588105
33ea879
 
27cf0c7
 
653dc95
 
 
 
33ea879
27cf0c7
 
 
 
 
 
 
 
653dc95
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import re
import os
import time
import torch
import shutil
import argparse
import gradio as gr
from utils import *
from config import *
from convert import *
from transformers import GPT2Config
import warnings

warnings.filterwarnings("ignore")


def get_args(parser):
    parser.add_argument(
        "-num_tunes",
        type=int,
        default=1,
        help="the number of independently computed returned tunes",
    )
    parser.add_argument(
        "-max_patch",
        type=int,
        default=128,
        help="integer to define the maximum length in tokens of each tune",
    )
    parser.add_argument(
        "-top_p",
        type=float,
        default=0.8,
        help="float to define the tokens that are within the sample operation of text generation",
    )
    parser.add_argument(
        "-top_k",
        type=int,
        default=8,
        help="integer to define the tokens that are within the sample operation of text generation",
    )
    parser.add_argument(
        "-temperature",
        type=float,
        default=1.2,
        help="the temperature of the sampling operation",
    )
    parser.add_argument("-seed", type=int, default=None, help="seed for randomstate")
    parser.add_argument(
        "-show_control_code",
        type=bool,
        default=True,
        help="whether to show control code",
    )
    args = parser.parse_args()

    return args


def generate_abc(args, region):
    patchilizer = Patchilizer()

    patch_config = GPT2Config(
        num_hidden_layers=PATCH_NUM_LAYERS,
        max_length=PATCH_LENGTH,
        max_position_embeddings=PATCH_LENGTH,
        vocab_size=1,
    )

    char_config = GPT2Config(
        num_hidden_layers=CHAR_NUM_LAYERS,
        max_length=PATCH_SIZE,
        max_position_embeddings=PATCH_SIZE,
        vocab_size=128,
    )

    model = TunesFormer(patch_config, char_config, share_weights=SHARE_WEIGHTS)

    filename = WEIGHT_PATH

    if os.path.exists(filename):
        print(f"Weights already exist at '{filename}'. Loading...")

    else:
        download()

    checkpoint = torch.load(filename, map_location=torch.device("cpu"))
    model.load_state_dict(checkpoint["model"])
    model = model.to(device)
    model.eval()

    prompt = template(region)

    tunes = ""
    num_tunes = args.num_tunes
    max_patch = args.max_patch
    top_p = args.top_p
    top_k = args.top_k
    temperature = args.temperature
    seed = args.seed
    show_control_code = args.show_control_code

    print(" HYPERPARAMETERS ".center(60, "#"), "\n")
    args = vars(args)

    for key in args.keys():
        print(f"{key}: {str(args[key])}")

    print("\n", " OUTPUT TUNES ".center(60, "#"))

    start_time = time.time()

    for i in range(num_tunes):
        title_artist = f"T:{region} Fragment\nC:Generated by AI\n"
        tune = f"X:{str(i + 1)}\n{title_artist + prompt}"
        lines = re.split(r"(\n)", tune)
        tune = ""
        skip = False
        for line in lines:
            if show_control_code or line[:2] not in ["S:", "B:", "E:"]:
                if not skip:
                    print(line, end="")
                    tune += line

                skip = False

            else:
                skip = True

        input_patches = torch.tensor(
            [patchilizer.encode(prompt, add_special_patches=True)[:-1]], device=device
        )

        if tune == "":
            tokens = None

        else:
            prefix = patchilizer.decode(input_patches[0])
            remaining_tokens = prompt[len(prefix) :]
            tokens = torch.tensor(
                [patchilizer.bos_token_id] + [ord(c) for c in remaining_tokens],
                device=device,
            )

        while input_patches.shape[1] < max_patch:
            predicted_patch, seed = model.generate(
                input_patches,
                tokens,
                top_p=top_p,
                top_k=top_k,
                temperature=temperature,
                seed=seed,
            )
            tokens = None

            if predicted_patch[0] != patchilizer.eos_token_id:
                next_bar = patchilizer.decode([predicted_patch])

                if show_control_code or next_bar[:2] not in ["S:", "B:", "E:"]:
                    print(next_bar, end="")
                    tune += next_bar

                if next_bar == "":
                    break

                next_bar = remaining_tokens + next_bar
                remaining_tokens = ""

                predicted_patch = torch.tensor(
                    patchilizer.bar2patch(next_bar), device=device
                ).unsqueeze(0)

                input_patches = torch.cat(
                    [input_patches, predicted_patch.unsqueeze(0)], dim=1
                )

            else:
                break

        tunes += f"{tune}\n\n"
        print("\n")

    print("Generation time: {:.2f} seconds".format(time.time() - start_time))
    os.makedirs("./tmp", exist_ok=True)
    timestamp = time.strftime("%a_%d_%b_%Y_%H_%M_%S", time.localtime())
    out_midi = abc_to_midi(tunes, f"./tmp/[{region}]{timestamp}.mid")
    out_xml = abc_to_musicxml(tunes, f"./tmp/[{region}]{timestamp}.musicxml")
    out_mxl = musicxml_to_mxl(f"./tmp/[{region}]{timestamp}.musicxml")
    pdf_file, jpg_file = mxl2jpg(out_mxl)
    wav_file = midi2wav(out_midi)

    return tunes, out_midi, pdf_file, out_xml, out_mxl, jpg_file, wav_file


def inference(region):
    if os.path.exists("./tmp"):
        shutil.rmtree("./tmp")

    parser = argparse.ArgumentParser()
    args = get_args(parser)
    return generate_abc(args, region)


with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            region_opt = gr.Dropdown(
                choices=["Mondstadt", "Liyue", "Inazuma", "Sumeru", "Fontaine"],
                value="Mondstadt",
                label="Region genre",
            )
            gen_btn = gr.Button("Generate")

        with gr.Column():
            wav_output = gr.Audio(label="Audio", type="filepath")
            dld_midi = gr.components.File(label="Download MIDI")
            pdf_score = gr.components.File(label="Download PDF score")
            dld_xml = gr.components.File(label="Download MusicXML")
            dld_mxl = gr.components.File(label="Download MXL")
            abc_output = gr.Textbox(label="abc score", show_copy_button=True)
            img_score = gr.Image(label="Staff", type="filepath")

    gen_btn.click(
        inference,
        inputs=region_opt,
        outputs=[
            abc_output,
            dld_midi,
            pdf_score,
            dld_xml,
            dld_mxl,
            img_score,
            wav_output,
        ],
    )

demo.launch(share=True)