Spaces:
Running
Running
File size: 6,726 Bytes
653dc95 33ea879 653dc95 27cf0c7 653dc95 27cf0c7 653dc95 27cf0c7 653dc95 27cf0c7 653dc95 27cf0c7 653dc95 27cf0c7 653dc95 27cf0c7 653dc95 27cf0c7 653dc95 27cf0c7 f9ed6a5 27cf0c7 653dc95 27cf0c7 653dc95 27cf0c7 653dc95 27cf0c7 653dc95 27cf0c7 653dc95 27cf0c7 653dc95 27cf0c7 653dc95 27cf0c7 653dc95 19b4090 653dc95 27cf0c7 33ea879 653dc95 33ea879 653dc95 27cf0c7 653dc95 27cf0c7 653dc95 27cf0c7 653dc95 2588105 33ea879 27cf0c7 653dc95 33ea879 27cf0c7 653dc95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import re
import os
import time
import torch
import shutil
import argparse
import gradio as gr
from utils import *
from config import *
from convert import *
from transformers import GPT2Config
import warnings
warnings.filterwarnings("ignore")
def get_args(parser):
parser.add_argument(
"-num_tunes",
type=int,
default=1,
help="the number of independently computed returned tunes",
)
parser.add_argument(
"-max_patch",
type=int,
default=128,
help="integer to define the maximum length in tokens of each tune",
)
parser.add_argument(
"-top_p",
type=float,
default=0.8,
help="float to define the tokens that are within the sample operation of text generation",
)
parser.add_argument(
"-top_k",
type=int,
default=8,
help="integer to define the tokens that are within the sample operation of text generation",
)
parser.add_argument(
"-temperature",
type=float,
default=1.2,
help="the temperature of the sampling operation",
)
parser.add_argument("-seed", type=int, default=None, help="seed for randomstate")
parser.add_argument(
"-show_control_code",
type=bool,
default=True,
help="whether to show control code",
)
args = parser.parse_args()
return args
def generate_abc(args, region):
patchilizer = Patchilizer()
patch_config = GPT2Config(
num_hidden_layers=PATCH_NUM_LAYERS,
max_length=PATCH_LENGTH,
max_position_embeddings=PATCH_LENGTH,
vocab_size=1,
)
char_config = GPT2Config(
num_hidden_layers=CHAR_NUM_LAYERS,
max_length=PATCH_SIZE,
max_position_embeddings=PATCH_SIZE,
vocab_size=128,
)
model = TunesFormer(patch_config, char_config, share_weights=SHARE_WEIGHTS)
filename = WEIGHT_PATH
if os.path.exists(filename):
print(f"Weights already exist at '{filename}'. Loading...")
else:
download()
checkpoint = torch.load(filename, map_location=torch.device("cpu"))
model.load_state_dict(checkpoint["model"])
model = model.to(device)
model.eval()
prompt = template(region)
tunes = ""
num_tunes = args.num_tunes
max_patch = args.max_patch
top_p = args.top_p
top_k = args.top_k
temperature = args.temperature
seed = args.seed
show_control_code = args.show_control_code
print(" HYPERPARAMETERS ".center(60, "#"), "\n")
args = vars(args)
for key in args.keys():
print(f"{key}: {str(args[key])}")
print("\n", " OUTPUT TUNES ".center(60, "#"))
start_time = time.time()
for i in range(num_tunes):
title_artist = f"T:{region} Fragment\nC:Generated by AI\n"
tune = f"X:{str(i + 1)}\n{title_artist + prompt}"
lines = re.split(r"(\n)", tune)
tune = ""
skip = False
for line in lines:
if show_control_code or line[:2] not in ["S:", "B:", "E:"]:
if not skip:
print(line, end="")
tune += line
skip = False
else:
skip = True
input_patches = torch.tensor(
[patchilizer.encode(prompt, add_special_patches=True)[:-1]], device=device
)
if tune == "":
tokens = None
else:
prefix = patchilizer.decode(input_patches[0])
remaining_tokens = prompt[len(prefix) :]
tokens = torch.tensor(
[patchilizer.bos_token_id] + [ord(c) for c in remaining_tokens],
device=device,
)
while input_patches.shape[1] < max_patch:
predicted_patch, seed = model.generate(
input_patches,
tokens,
top_p=top_p,
top_k=top_k,
temperature=temperature,
seed=seed,
)
tokens = None
if predicted_patch[0] != patchilizer.eos_token_id:
next_bar = patchilizer.decode([predicted_patch])
if show_control_code or next_bar[:2] not in ["S:", "B:", "E:"]:
print(next_bar, end="")
tune += next_bar
if next_bar == "":
break
next_bar = remaining_tokens + next_bar
remaining_tokens = ""
predicted_patch = torch.tensor(
patchilizer.bar2patch(next_bar), device=device
).unsqueeze(0)
input_patches = torch.cat(
[input_patches, predicted_patch.unsqueeze(0)], dim=1
)
else:
break
tunes += f"{tune}\n\n"
print("\n")
print("Generation time: {:.2f} seconds".format(time.time() - start_time))
os.makedirs("./tmp", exist_ok=True)
timestamp = time.strftime("%a_%d_%b_%Y_%H_%M_%S", time.localtime())
out_midi = abc_to_midi(tunes, f"./tmp/[{region}]{timestamp}.mid")
out_xml = abc_to_musicxml(tunes, f"./tmp/[{region}]{timestamp}.musicxml")
out_mxl = musicxml_to_mxl(f"./tmp/[{region}]{timestamp}.musicxml")
pdf_file, jpg_file = mxl2jpg(out_mxl)
wav_file = midi2wav(out_midi)
return tunes, out_midi, pdf_file, out_xml, out_mxl, jpg_file, wav_file
def inference(region):
if os.path.exists("./tmp"):
shutil.rmtree("./tmp")
parser = argparse.ArgumentParser()
args = get_args(parser)
return generate_abc(args, region)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
region_opt = gr.Dropdown(
choices=["Mondstadt", "Liyue", "Inazuma", "Sumeru", "Fontaine"],
value="Mondstadt",
label="Region genre",
)
gen_btn = gr.Button("Generate")
with gr.Column():
wav_output = gr.Audio(label="Audio", type="filepath")
dld_midi = gr.components.File(label="Download MIDI")
pdf_score = gr.components.File(label="Download PDF score")
dld_xml = gr.components.File(label="Download MusicXML")
dld_mxl = gr.components.File(label="Download MXL")
abc_output = gr.Textbox(label="abc score", show_copy_button=True)
img_score = gr.Image(label="Staff", type="filepath")
gen_btn.click(
inference,
inputs=region_opt,
outputs=[
abc_output,
dld_midi,
pdf_score,
dld_xml,
dld_mxl,
img_score,
wav_output,
],
)
demo.launch(share=True)
|