Spaces:
Runtime error
Runtime error
File size: 6,201 Bytes
3a0bfe5 2e2ab76 3a0bfe5 2e2ab76 3a0bfe5 2e2ab76 3a0bfe5 2e2ab76 3a0bfe5 2e2ab76 3a0bfe5 2e2ab76 3a0bfe5 2e2ab76 3a0bfe5 2e2ab76 7844023 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import pickle
import pandas as p
import numpy as np
import requests
import io
import os
import cv2
import gdown
import tempfile
from PIL import Image, ImageDraw, ImageFont
import PIL
from transparent_background import Remover
import torch
import torch.nn.functional as F
import time
import gradio as gr
from PIL import Image
import requests
from io import BytesIO
from torchvision import datasets, models, transforms
class BackgroundRemover(Remover):
def __init__(self, model_bytes, device=None):
"""
model_bytes: model weights as bytes (downloaded from "https://drive.google.com/file/d/13oBl5MTVcWER3YU4fSxW3ATlVfueFQPY/view?usp=share_link")
device : (default cuda:0 if available) specifying device for computation
"""
self.model_path = None
with tempfile.NamedTemporaryFile(suffix=".pth", delete=False) as tmp_file:
tmp_file.write(model_bytes)
self.model_path = tmp_file.name
# get the path of the script that defines this class
script_path = "" #os.path.abspath(__file__)
# construct the path to the arial.ttf file relative to the script location
font_path = os.path.join(os.path.dirname(script_path), "arial.ttf")
self.font_path = font_path
super().__init__(fast=False, jit=False, device=device, ckpt=self.model_path)
def __del__(self):
if self.model_path is not None and os.path.exists(self.model_path):
os.remove(self.model_path)
def download(self):
pass
def predict(self, image, comparison=False, extra=""):
s = time.time()
prediction = self.raw_predict(image)
e = time.time()
#print(f"predict time {e-s:.4f}")
if not comparison:
return prediction
else:
return self.compare(image, prediction, e-s, extra)
def raw_predict(self, image, empty_cache_after_prediction=False):
t1 = time.time()
out = self.process(image)
t2 = time.time()
prediction = Image.fromarray(out)
# Crea una nueva imagen RGB con un fondo blanco del mismo tamaño que la original
new_image = Image.new("RGB", prediction.size, (255, 255, 255))
# Combina las dos imágenes, reemplazando los píxeles transparentes con blanco
new_image.paste(prediction, mask=prediction.split()[3])
t3 = time.time()
if empty_cache_after_prediction and "cuda" in self.device:
torch.cuda.empty_cache()
t4 = time.time()
#print(f"{(t2-t1)*1000:.4f} {(t3-t2)*1000:.4f} {(t4-t3)*1000:.4f}")
return new_image
def compare(self, image1, image2, prediction_time, extra_info=""):
extra = 80
concatenated_image = Image.new('RGB', (image1.width + image2.width, image1.height + extra), (255, 255, 255))
concatenated_image.paste(image1, (0, 0+extra))
concatenated_image.paste(image2, (image1.width, 0+extra))
draw = ImageDraw.Draw(concatenated_image)
font = ImageFont.truetype(self.font_path, 20)
draw.text((20, 0), f"size:{image1.size}\nmodel time:{prediction_time:.2f}s\n{extra_info}", fill=(0, 0, 0), font=font)
return concatenated_image
def read_image_from_url(self, url):
response = requests.get(url)
image = Image.open(io.BytesIO(response.content)).convert("RGB")
return image
def read_image_from_file(self, file_name):
image = Image.open(file_name).convert("RGB")
return image
def read_image_form_bytes(self, image_bytes):
# Convertir los bytes en imagen
image = Image.open(io.BytesIO(image_bytes))
return image
def image_to_bytes(self, image, format="JPEG"):
image_bytes = io.BytesIO()
image_rgb = image.convert('RGB')
image_rgb.save(image_bytes, format=format)
image_bytes = image_bytes.getvalue()
return image_bytes
@classmethod
def create_instance_from_model_url(cls, url):
model_bytes = BackgroundRemover.download_model_from_url(url)
return cls(model_bytes)
@classmethod
def create_instance_from_model_file(cls, file_path, device=None):
with open(file_path, 'rb') as f:
model_bytes = f.read()
return cls(model_bytes, device)
@classmethod
def download_model_from_url(cls, url):
with io.BytesIO() as file:
gdown.download(url, file, quiet=False, fuzzy=True)
# Get the contents of the file as bytes
file.seek(0)
model_bytes = file.read()
return model_bytes
def show_image(url: str):
response = requests.get(url)
img = Image.open(BytesIO(response.content))
return img
def do_predictions(url):
response = requests.get(url)
img = Image.open(BytesIO(response.content))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
transform_model = BackgroundRemover.create_instance_from_model_file("model_weights.pth")
# Set up data transformations
data_transforms = {
'train': transforms.Compose([
transforms.Resize((384, 384)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize((384, 384)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
out = transform_model.predict(img, comparison=False)
return img, out
iface = gr.Interface(fn=do_predictions, inputs="text",
examples=[["https://http2.mlstatic.com/D_NQ_NP_2X_823376-MLU29226703936_012019-F.webp"],
["https://http2.mlstatic.com/D_781350-MLA53584851929_022023-F.jpg"]],
outputs=["image", "image"],
)
iface.launch() |