File size: 13,879 Bytes
2eacc9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
import numpy as np
import cv2
import os
import random
#My library:
from opencv_transform.annotation import BodyPart
###
#
# maskdet_to_maskfin
#
# steps:
# 1. Extract annotation
# 1.a: Filter by color
# 1.b: Find ellipses
# 1.c: Filter out ellipses by max size, and max total numbers
# 1.d: Detect Problems
# 1.e: Resolve the problems, or discard the transformation
# 2. With the body list, draw maskfin, using maskref
#
###
# create_maskfin ==============================================================================
# return:
# (<Boolean> True/False), depending on the transformation process
def create_maskfin(maskref, maskdet):
#Create a total green image, in which draw details ellipses
details = np.zeros((512,512,3), np.uint8)
details[:,:,:] = (0,255,0) # (B, G, R)
#Extract body part features:
bodypart_list = extractAnnotations(maskdet);
#Check if the list is not empty:
if bodypart_list:
#Draw body part in details image:
for obj in bodypart_list:
if obj.w < obj.h:
aMax = int(obj.h/2) #asse maggiore
aMin = int(obj.w/2) #asse minore
angle = 0 #angle
else:
aMax = int(obj.w/2)
aMin = int(obj.h/2)
angle = 90
x = int(obj.x)
y = int(obj.y)
#Draw ellipse
if obj.name == "tit":
cv2.ellipse(details,(x,y),(aMax,aMin),angle,0,360,(0,205,0),-1) #(0,0,0,50)
elif obj.name == "aur":
cv2.ellipse(details,(x,y),(aMax,aMin),angle,0,360,(0,0,255),-1) #red
elif obj.name == "nip":
cv2.ellipse(details,(x,y),(aMax,aMin),angle,0,360,(255,255,255),-1) #white
elif obj.name == "belly":
cv2.ellipse(details,(x,y),(aMax,aMin),angle,0,360,(255,0,255),-1) #purple
elif obj.name == "vag":
cv2.ellipse(details,(x,y),(aMax,aMin),angle,0,360,(255,0,0),-1) #blue
elif obj.name == "hair":
xmin = x - int(obj.w/2)
ymin = y - int(obj.h/2)
xmax = x + int(obj.w/2)
ymax = y + int(obj.h/2)
cv2.rectangle(details,(xmin,ymin),(xmax,ymax),(100,100,100),-1)
#Define the green color filter
f1 = np.asarray([0, 250, 0]) # green color filter
f2 = np.asarray([10, 255, 10])
#From maskref, extrapolate only the green mask
green_mask = cv2.bitwise_not(cv2.inRange(maskref, f1, f2)) #green is 0
# Create an inverted mask
green_mask_inv = cv2.bitwise_not(green_mask)
# Cut maskref and detail image, using the green_mask & green_mask_inv
res1 = cv2.bitwise_and(maskref, maskref, mask = green_mask)
res2 = cv2.bitwise_and(details, details, mask = green_mask_inv)
# Compone:
maskfin = cv2.add(res1, res2)
return maskfin
# extractAnnotations ==============================================================================
# input parameter:
# (<string> maskdet_img): relative path of the single maskdet image (es: testimg1/maskdet/1.png)
# return:
# (<BodyPart []> bodypart_list) - for failure/error, return an empty list []
def extractAnnotations(maskdet):
#Load the image
#image = cv2.imread(maskdet_img)
#Find body part
tits_list = findBodyPart(maskdet, "tit")
aur_list = findBodyPart(maskdet, "aur")
vag_list = findBodyPart(maskdet, "vag")
belly_list = findBodyPart(maskdet, "belly")
#Filter out parts basing on dimension (area and aspect ratio):
aur_list = filterDimParts(aur_list, 100, 1000, 0.5, 3);
tits_list = filterDimParts(tits_list, 1000, 60000, 0.2, 3);
vag_list = filterDimParts(vag_list, 10, 1000, 0.2, 3);
belly_list = filterDimParts(belly_list, 10, 1000, 0.2, 3);
#Filter couple (if parts are > 2, choose only 2)
aur_list = filterCouple(aur_list);
tits_list = filterCouple(tits_list);
#Detect a missing problem:
missing_problem = detectTitAurMissingProblem(tits_list, aur_list) #return a Number (code of the problem)
#Check if problem is SOLVEABLE:
if (missing_problem in [3,6,7,8]):
resolveTitAurMissingProblems(tits_list, aur_list, missing_problem)
#Infer the nips:
nip_list = inferNip(aur_list)
#Infer the hair:
hair_list = inferHair(vag_list)
#Return a combined list:
return tits_list + aur_list + nip_list + vag_list + hair_list + belly_list
# findBodyPart ==============================================================================
# input parameters:
# (<RGB>image, <string>part_name)
# return
# (<BodyPart[]>list)
def findBodyPart(image, part_name):
bodypart_list = [] #empty BodyPart list
#Get the correct color filter:
if part_name == "tit":
#Use combined color filter
f1 = np.asarray([0, 0, 0]) # tit color filter
f2 = np.asarray([10, 10, 10])
f3 = np.asarray([0, 0, 250]) # aur color filter
f4 = np.asarray([0, 0, 255])
color_mask1 = cv2.inRange(image, f1, f2)
color_mask2 = cv2.inRange(image, f3, f4)
color_mask = cv2.bitwise_or(color_mask1, color_mask2) #combine
elif part_name == "aur":
f1 = np.asarray([0, 0, 250]) # aur color filter
f2 = np.asarray([0, 0, 255])
color_mask = cv2.inRange(image, f1, f2)
elif part_name == "vag":
f1 = np.asarray([250, 0, 0]) # vag filter
f2 = np.asarray([255, 0, 0])
color_mask = cv2.inRange(image, f1, f2)
elif part_name == "belly":
f1 = np.asarray([250, 0, 250]) # belly filter
f2 = np.asarray([255, 0, 255])
color_mask = cv2.inRange(image, f1, f2)
#find contours:
contours, hierarchy = cv2.findContours(color_mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
#for every contour:
for cnt in contours:
if len(cnt)>5: #at least 5 points to fit ellipse
#(x, y), (MA, ma), angle = cv2.fitEllipse(cnt)
ellipse = cv2.fitEllipse(cnt)
#Fit Result:
x = ellipse[0][0] #center x
y = ellipse[0][1] #center y
angle = ellipse[2] #angle
aMin = ellipse[1][0]; #asse minore
aMax = ellipse[1][1]; #asse maggiore
#Detect direction:
if angle == 0:
h = aMax
w = aMin
else:
h = aMin
w = aMax
#Normalize the belly size:
if part_name == "belly":
if w<15:
w *= 2
if h<15:
h *= 2
#Normalize the vag size:
if part_name == "vag":
if w<15:
w *= 2
if h<15:
h *= 2
#Calculate Bounding Box:
xmin = int(x - (w/2))
xmax = int(x + (w/2))
ymin = int(y - (h/2))
ymax = int(y + (h/2))
bodypart_list.append(BodyPart(part_name, xmin, ymin, xmax, ymax, x, y, w, h ))
return bodypart_list
# filterDimParts ==============================================================================
# input parameters:
# (<BodyPart[]>list, <num> minimum area of part, <num> max area, <num> min aspect ratio, <num> max aspect ratio)
def filterDimParts(bp_list, min_area, max_area, min_ar, max_ar):
b_filt = []
for obj in bp_list:
a = obj.w*obj.h #Object AREA
if ((a > min_area)and(a < max_area)):
ar = obj.w/obj.h #Object ASPECT RATIO
if ((ar>min_ar)and(ar<max_ar)):
b_filt.append(obj)
return b_filt
# filterCouple ==============================================================================
# input parameters:
# (<BodyPart[]>list)
def filterCouple(bp_list):
#Remove exceed parts
if (len(bp_list)>2):
#trovare coppia (a,b) che minimizza bp_list[a].y-bp_list[b].y
min_a = 0
min_b = 1
min_diff = abs(bp_list[min_a].y-bp_list[min_b].y)
for a in range(0,len(bp_list)):
for b in range(0,len(bp_list)):
#TODO: avoid repetition (1,0) (0,1)
if a != b:
diff = abs(bp_list[a].y-bp_list[b].y)
if diff<min_diff:
min_diff = diff
min_a = a
min_b = b
b_filt = []
b_filt.append(bp_list[min_a])
b_filt.append(bp_list[min_b])
return b_filt
else:
#No change
return bp_list
# detectTitAurMissingProblem ==============================================================================
# input parameters:
# (<BodyPart[]> tits list, <BodyPart[]> aur list)
# return
# (<num> problem code)
# TIT | AUR | code | SOLVE? |
# 0 | 0 | 1 | NO |
# 0 | 1 | 2 | NO |
# 0 | 2 | 3 | YES |
# 1 | 0 | 4 | NO |
# 1 | 1 | 5 | NO |
# 1 | 2 | 6 | YES |
# 2 | 0 | 7 | YES |
# 2 | 1 | 8 | YES |
def detectTitAurMissingProblem(tits_list, aur_list):
t_len = len(tits_list)
a_len = len(aur_list)
if (t_len == 0):
if (a_len == 0):
return 1
elif (a_len == 1):
return 2
elif (a_len == 2):
return 3
else:
return -1
elif (t_len == 1):
if (a_len == 0):
return 4
elif (a_len == 1):
return 5
elif (a_len == 2):
return 6
else:
return -1
elif (t_len == 2):
if (a_len == 0):
return 7
elif (a_len == 1):
return 8
else:
return -1
else:
return -1
# resolveTitAurMissingProblems ==============================================================================
# input parameters:
# (<BodyPart[]> tits list, <BodyPart[]> aur list, problem code)
# return
# none
def resolveTitAurMissingProblems(tits_list, aur_list, problem_code):
if problem_code == 3:
random_tit_factor = random.randint(2, 5) #TOTEST
#Add the first tit:
new_w = aur_list[0].w * random_tit_factor #TOTEST
new_x = aur_list[0].x
new_y = aur_list[0].y
xmin = int(new_x - (new_w/2))
xmax = int(new_x + (new_w/2))
ymin = int(new_y - (new_w/2))
ymax = int(new_y + (new_w/2))
tits_list.append(BodyPart("tit", xmin, ymin, xmax, ymax, new_x, new_y, new_w, new_w ))
#Add the second tit:
new_w = aur_list[1].w * random_tit_factor #TOTEST
new_x = aur_list[1].x
new_y = aur_list[1].y
xmin = int(new_x - (new_w/2))
xmax = int(new_x + (new_w/2))
ymin = int(new_y - (new_w/2))
ymax = int(new_y + (new_w/2))
tits_list.append(BodyPart("tit", xmin, ymin, xmax, ymax, new_x, new_y, new_w, new_w ))
elif problem_code == 6:
#Find wich aur is full:
d1 = abs(tits_list[0].x - aur_list[0].x)
d2 = abs(tits_list[0].x - aur_list[1].x)
if d1 > d2:
#aur[0] is empty
new_x = aur_list[0].x
new_y = aur_list[0].y
else:
#aur[1] is empty
new_x = aur_list[1].x
new_y = aur_list[1].y
#Calculate Bounding Box:
xmin = int(new_x - (tits_list[0].w/2))
xmax = int(new_x + (tits_list[0].w/2))
ymin = int(new_y - (tits_list[0].w/2))
ymax = int(new_y + (tits_list[0].w/2))
tits_list.append(BodyPart("tit", xmin, ymin, xmax, ymax, new_x, new_y, tits_list[0].w, tits_list[0].w ))
elif problem_code == 7:
#Add the first aur:
new_w = tits_list[0].w * random.uniform(0.03, 0.1) #TOTEST
new_x = tits_list[0].x
new_y = tits_list[0].y
xmin = int(new_x - (new_w/2))
xmax = int(new_x + (new_w/2))
ymin = int(new_y - (new_w/2))
ymax = int(new_y + (new_w/2))
aur_list.append(BodyPart("aur", xmin, ymin, xmax, ymax, new_x, new_y, new_w, new_w ))
#Add the second aur:
new_w = tits_list[1].w * random.uniform(0.03, 0.1) #TOTEST
new_x = tits_list[1].x
new_y = tits_list[1].y
xmin = int(new_x - (new_w/2))
xmax = int(new_x + (new_w/2))
ymin = int(new_y - (new_w/2))
ymax = int(new_y + (new_w/2))
aur_list.append(BodyPart("aur", xmin, ymin, xmax, ymax, new_x, new_y, new_w, new_w ))
elif problem_code == 8:
#Find wich tit is full:
d1 = abs(aur_list[0].x - tits_list[0].x)
d2 = abs(aur_list[0].x - tits_list[1].x)
if d1 > d2:
#tit[0] is empty
new_x = tits_list[0].x
new_y = tits_list[0].y
else:
#tit[1] is empty
new_x = tits_list[1].x
new_y = tits_list[1].y
#Calculate Bounding Box:
xmin = int(new_x - (aur_list[0].w/2))
xmax = int(new_x + (aur_list[0].w/2))
ymin = int(new_y - (aur_list[0].w/2))
ymax = int(new_y + (aur_list[0].w/2))
aur_list.append(BodyPart("aur", xmin, ymin, xmax, ymax, new_x, new_y, aur_list[0].w, aur_list[0].w ))
# detectTitAurPositionProblem ==============================================================================
# input parameters:
# (<BodyPart[]> tits list, <BodyPart[]> aur list)
# return
# (<Boolean> True/False)
def detectTitAurPositionProblem(tits_list, aur_list):
diffTitsX = abs(tits_list[0].x - tits_list[1].x)
if diffTitsX < 40:
print("diffTitsX")
#Tits too narrow (orizontally)
return True
diffTitsY = abs(tits_list[0].y - tits_list[1].y)
if diffTitsY > 120:
#Tits too distanced (vertically)
print("diffTitsY")
return True
diffTitsW = abs(tits_list[0].w - tits_list[1].w)
if ((diffTitsW < 0.1)or(diffTitsW>60)):
print("diffTitsW")
#Tits too equals, or too different (width)
return True
#Check if body position is too low (face not covered by watermark)
if aur_list[0].y > 350: #tits too low
#Calculate the ratio between y and aurs distance
rapp = aur_list[0].y/(abs(aur_list[0].x - aur_list[1].x))
if rapp > 2.8:
print("aurDown")
return True
return False
# inferNip ==============================================================================
# input parameters:
# (<BodyPart[]> aur list)
# return
# (<BodyPart[]> nip list)
def inferNip(aur_list):
nip_list = []
for aur in aur_list:
#Nip rules:
# - circle (w == h)
# - min dim: 5
# - bigger if aur is bigger
nip_dim = int(5 + aur.w*random.uniform(0.03, 0.09))
#center:
x = aur.x
y = aur.y
#Calculate Bounding Box:
xmin = int(x - (nip_dim/2))
xmax = int(x + (nip_dim/2))
ymin = int(y - (nip_dim/2))
ymax = int(y + (nip_dim/2))
nip_list.append(BodyPart("nip", xmin, ymin, xmax, ymax, x, y, nip_dim, nip_dim ))
return nip_list
# inferHair (TOTEST) ==============================================================================
# input parameters:
# (<BodyPart[]> vag list)
# return
# (<BodyPart[]> hair list)
def inferHair(vag_list):
hair_list = []
#70% of chanche to add hair
if random.uniform(0.0, 1.0) > 0.3:
for vag in vag_list:
#Hair rules:
hair_w = vag.w*random.uniform(0.4, 1.5)
hair_h = vag.h*random.uniform(0.4, 1.5)
#center:
x = vag.x
y = vag.y - (hair_h/2) - (vag.h/2)
#Calculate Bounding Box:
xmin = int(x - (hair_w/2))
xmax = int(x + (hair_w/2))
ymin = int(y - (hair_h/2))
ymax = int(y + (hair_h/2))
hair_list.append(BodyPart("hair", xmin, ymin, xmax, ymax, x, y, hair_w, hair_h ))
return hair_list
|