File size: 7,542 Bytes
3a5fce1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
from PIL import Image
import numpy as np
import cv2
import torchvision.transforms as transforms
import torch
import io
import os
import functools
class DataLoader():
def __init__(self, opt, cv_img):
super(DataLoader, self).__init__()
self.dataset = Dataset()
self.dataset.initialize(opt, cv_img)
self.dataloader = torch.utils.data.DataLoader(
self.dataset,
batch_size=opt.batchSize,
shuffle=not opt.serial_batches,
num_workers=int(opt.nThreads))
def load_data(self):
return self.dataloader
def __len__(self):
return 1
class Dataset(torch.utils.data.Dataset):
def __init__(self):
super(Dataset, self).__init__()
def initialize(self, opt, cv_img):
self.opt = opt
self.root = opt.dataroot
self.A = Image.fromarray(cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB))
self.dataset_size = 1
def __getitem__(self, index):
transform_A = get_transform(self.opt)
A_tensor = transform_A(self.A.convert('RGB'))
B_tensor = inst_tensor = feat_tensor = 0
input_dict = {'label': A_tensor, 'inst': inst_tensor, 'image': B_tensor,
'feat': feat_tensor, 'path': ""}
return input_dict
def __len__(self):
return 1
class DeepModel(torch.nn.Module):
def initialize(self, opt):
torch.cuda.empty_cache()
self.opt = opt
self.gpu_ids = [] #FIX CPU
self.netG = self.__define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG,
opt.n_downsample_global, opt.n_blocks_global, opt.n_local_enhancers,
opt.n_blocks_local, opt.norm, self.gpu_ids)
# load networks
self.__load_network(self.netG)
def inference(self, label, inst):
# Encode Inputs
input_label, inst_map, _, _ = self.__encode_input(label, inst, infer=True)
# Fake Generation
input_concat = input_label
with torch.no_grad():
fake_image = self.netG.forward(input_concat)
return fake_image
# helper loading function that can be used by subclasses
def __load_network(self, network):
save_path = os.path.join(self.opt.checkpoints_dir)
network.load_state_dict(torch.load(save_path))
def __encode_input(self, label_map, inst_map=None, real_image=None, feat_map=None, infer=False):
if (len(self.gpu_ids) > 0):
input_label = label_map.data.cuda() #GPU
else:
input_label = label_map.data #CPU
return input_label, inst_map, real_image, feat_map
def __weights_init(self, m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm2d') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
def __define_G(self, input_nc, output_nc, ngf, netG, n_downsample_global=3, n_blocks_global=9, n_local_enhancers=1,
n_blocks_local=3, norm='instance', gpu_ids=[]):
norm_layer = self.__get_norm_layer(norm_type=norm)
netG = GlobalGenerator(input_nc, output_nc, ngf, n_downsample_global, n_blocks_global, norm_layer)
if len(gpu_ids) > 0:
netG.cuda(gpu_ids[0])
netG.apply(self.__weights_init)
return netG
def __get_norm_layer(self, norm_type='instance'):
norm_layer = functools.partial(torch.nn.InstanceNorm2d, affine=False)
return norm_layer
##############################################################################
# Generator
##############################################################################
class GlobalGenerator(torch.nn.Module):
def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=torch.nn.BatchNorm2d,
padding_type='reflect'):
assert(n_blocks >= 0)
super(GlobalGenerator, self).__init__()
activation = torch.nn.ReLU(True)
model = [torch.nn.ReflectionPad2d(3), torch.nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), norm_layer(ngf), activation]
### downsample
for i in range(n_downsampling):
mult = 2**i
model += [torch.nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1),
norm_layer(ngf * mult * 2), activation]
### resnet blocks
mult = 2**n_downsampling
for i in range(n_blocks):
model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer)]
### upsample
for i in range(n_downsampling):
mult = 2**(n_downsampling - i)
model += [torch.nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1),
norm_layer(int(ngf * mult / 2)), activation]
model += [torch.nn.ReflectionPad2d(3), torch.nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), torch.nn.Tanh()]
self.model = torch.nn.Sequential(*model)
def forward(self, input):
return self.model(input)
# Define a resnet block
class ResnetBlock(torch.nn.Module):
def __init__(self, dim, padding_type, norm_layer, activation=torch.nn.ReLU(True), use_dropout=False):
super(ResnetBlock, self).__init__()
self.conv_block = self.__build_conv_block(dim, padding_type, norm_layer, activation, use_dropout)
def __build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout):
conv_block = []
p = 0
if padding_type == 'reflect':
conv_block += [torch.nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv_block += [torch.nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv_block += [torch.nn.Conv2d(dim, dim, kernel_size=3, padding=p),
norm_layer(dim),
activation]
if use_dropout:
conv_block += [torch.nn.Dropout(0.5)]
p = 0
if padding_type == 'reflect':
conv_block += [torch.nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv_block += [torch.nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv_block += [torch.nn.Conv2d(dim, dim, kernel_size=3, padding=p),
norm_layer(dim)]
return torch.nn.Sequential(*conv_block)
def forward(self, x):
out = x + self.conv_block(x)
return out
# Data utils:
def get_transform(opt, method=Image.BICUBIC, normalize=True):
transform_list = []
base = float(2 ** opt.n_downsample_global)
if opt.netG == 'local':
base *= (2 ** opt.n_local_enhancers)
transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base, method)))
transform_list += [transforms.ToTensor()]
if normalize:
transform_list += [transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5))]
return transforms.Compose(transform_list)
def __make_power_2(img, base, method=Image.BICUBIC):
ow, oh = img.size
h = int(round(oh / base) * base)
w = int(round(ow / base) * base)
if (h == oh) and (w == ow):
return img
return img.resize((w, h), method)
# Converts a Tensor into a Numpy array
# |imtype|: the desired type of the converted numpy array
def tensor2im(image_tensor, imtype=np.uint8, normalize=True):
if isinstance(image_tensor, list):
image_numpy = []
for i in range(len(image_tensor)):
image_numpy.append(tensor2im(image_tensor[i], imtype, normalize))
return image_numpy
image_numpy = image_tensor.cpu().float().numpy()
if normalize:
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0
else:
image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0
image_numpy = np.clip(image_numpy, 0, 255)
if image_numpy.shape[2] == 1 or image_numpy.shape[2] > 3:
image_numpy = image_numpy[:,:,0]
return image_numpy.astype(imtype) |