File size: 6,868 Bytes
6cf191b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#############################
#   Imports and Contants    #
#############################

# Python modules
from enum import Enum
import os
import json
import time

# Remote packages
import torch

#############################
#         utilities
#############################

class ScoringType(Enum):
    DEFAULT = 'default'
    MAX_PROB = 'max-prob'
    INTERPOL = 'interpol'
    CONSTRAINT = 'constraint'
    MULTIPLE_CHOICE = 'multiple_choice'

class LossType(Enum):
    DEFAULT = 'default'
    CP_RP_DEF = 'cp-rp-def'
    CP_DEF = 'cp-def'
    PRP_NRP_DEF = 'prp-nrp-def'

class Head_Mask(Enum):
    ALL = 'all'
    NONE = 'none'
    RANDOM = 'random'
    SPECIFIC = 'specific'

class KGType(Enum):
    SWOW = 'swow'
    CSKG = 'cskg'
    CONCEPTNET = 'conceptnet'

class Model_Type(Enum):
    RELATIONS = 'relations'
    MASK = 'mask'
    DEFAULT = 'default'

    def is_simple_mask_commonsense(self):
        return self == Model_Type.MASK

    def there_is_difference_between_relations(self):
        return self == Model_Type.RELATIONS

class Data_Type(Enum):
    ELI5 = 'eli5'
    COMMONSENSE_QA = 'commonsense_qa'
    COMMONGEN_QA = 'commongen_qa'
    STACK_EXCHANGE = 'stackexchange_qa'
    ASK_SCIENCE = 'ask_science_qa'
    NATURAL_QUESTIONS = 'natural_questions'
    LAMA = 'lama'
    CONCEPTNET = 'conceptnet'
    CUSTOM = 'custom'
    COMMONGEN = 'commongen'

    @staticmethod
    def data_types_to_str(data_types):
        datasets_str = '-'.join([x.value for x in data_types])
        return datasets_str

#############################
#         Models
#############################

MODELS_PRETRAINING_NAME = {
    "bart_large": "facebook/bart-large",
    "bart_large_fp32": "patrickvonplaten/bart-large-fp32",
    "bart_large_tweak": "",
    "bart_base": "facebook/bart-base"
}

CURRENT_PRETRAINING_NAME = MODELS_PRETRAINING_NAME.get('bart_large_fp32')

#############################
#   Files Managment         #
#############################

def create_directory(output_dir):
    # Create output directory if needed
    if not os.path.exists(output_dir):
        try:
            os.makedirs(output_dir)
        except FileExistsError as _:
            return
    else:
        print(f"Output directory {output_dir} already exists")

def read_simple_text_file_2_vec(filename, store_dir='.'):
    with open(f'{store_dir}/{filename}', 'r') as f:
        return f.read().split('\n')

def write_dict_2_json_file(json_object, filename, store_dir='.'):
    create_directory(store_dir)
    with open(f'{store_dir}/{filename}', 'w', encoding='utf-8') as file:
        json.dump(json_object, file, ensure_ascii=False, indent=4)


def read_json_file_2_dict(filename, store_dir='.'):
    with open(f'{store_dir}/{filename}', 'r', encoding='utf-8') as file:
        return json.load(file)

def read_jsonl_file_2_dict(filename, store_dir='.'):
    elements = []
    with open(f'{store_dir}/{filename}', 'r', encoding='utf-8') as file:
        for line in file:
            elements.append(json.loads(line))
        return elements

def read_txt_2_list(filename, store_dir='.'):
    with open(f'{store_dir}/{filename}', 'r', encoding='utf-8') as file:
        return file.read().split('\n')

#############################
#           Data Structures helper functions
#############################

def get_chunks(lst, n):
    """Yield successive n-sized chunks from lst."""
    jump = len(lst)//n
    for i in range(0, len(lst), jump):
        yield lst[i:i + jump]

def get_jump_chunks(lst, jump):
    """Yield successive n-sized chunks from lst."""
    for i in range(0, len(lst), jump):
        yield lst[i:i + jump]

def join_str_first(sep_str, lis):
    return '{1}{0}'.format(sep_str.join(lis), sep_str).strip()

#############################
#           Huggingface
#############################

def inputs_introspection_print(tokenizer, inputs):
    input_ids = inputs.get('input_ids', None)
    input_text = tokenizer.batch_decode(input_ids, skip_special_tokens=False)
    labels_ids = inputs.get('labels', None)
    labels_text = tokenizer.batch_decode(labels_ids, skip_special_tokens=False)
    print('orginal input:', input_text[:2])
    print("::::::::::::::::::::::::::")
    print('orginal labels:', labels_text[:2])
    print("==========|||||==========")

def tok_data_2_text(tokenizer, all_inputs):
    def clean_input_text(text):
        real_text = text.split(tokenizer.eos_token)[0]
        real_text = real_text.replace(tokenizer.bos_token, '').strip()
        return real_text
    all_input_text, all_labels_text = [], []
    for inputs in all_inputs:
        input_ids = inputs.get('input_ids', None)
        input_text = tokenizer.decode(input_ids, skip_special_tokens=False)
        labels_ids = inputs.get('labels', None)
        labels_text = tokenizer.decode(labels_ids, skip_special_tokens=True)
        #print('input_text:', input_text)
        #print('labels_text:', labels_text)
        input_text = clean_input_text(input_text)
        all_input_text.append(input_text)
        all_labels_text.append(labels_text)
    return all_input_text, all_labels_text

#############################
#           Torch
#############################

def get_device(verbose:bool=True):
    # If there's a GPU available...
    if torch.cuda.is_available():
        device = torch.device("cuda")
        n_gpus = torch.cuda.device_count()
        first_gpu = torch.cuda.get_device_name(0)
        if verbose:
            print(f'There are {n_gpus} GPU(s) available.')
            print(f'GPU gonna be used: {first_gpu}')
    else:
        if verbose:
            print('No GPU available, using the CPU instead.')
        device = torch.device("cpu")
    return device

#############################
#         Timing
#############################

def timing_decorator(func):
    def wrapper(*args, **kwargs):
        start = time.time()
        original_return_val = func(*args, **kwargs)
        end = time.time()
        print("time elapsed in ", func.__name__, ": ", end - start, sep='')
        return original_return_val

    return wrapper

#############################
#         PRINTING UTILS
#############################

class LOGGER_COLORS:
    HEADER = '\033[95m'
    OKBLUE = '\033[94m'
    INFOCYAN = '\033[96m'
    OKGREEN = '\033[92m'
    WARNING = '\033[93m'
    FAIL = '\033[91m'
    ENDC = '\033[0m'
    BOLD = '\033[1m'
    UNDERLINE = '\033[4m'

def print_info(logger, message):
    logger.info(f'{LOGGER_COLORS.INFOCYAN}[INFO]{LOGGER_COLORS.ENDC}: {message}')

def print_success(logger, message):
    logger.info(f'{LOGGER_COLORS.OKGREEN}[SUCCESS]{LOGGER_COLORS.ENDC}: {message}')

def print_warning(logger, message):
    logger.info(f'{LOGGER_COLORS.WARNING}[WARNING]{LOGGER_COLORS.ENDC}: {message}')

def print_fail(logger, message):
    logger.info(f'{LOGGER_COLORS.FAIL}[FAIL]{LOGGER_COLORS.ENDC}: {message}')