Spaces:
Sleeping
Sleeping
File size: 7,188 Bytes
9859bf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
from llama_index.core import VectorStoreIndex, Document, StorageContext, Settings
from llama_index.vector_stores.faiss import FaissVectorStore
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.response_synthesizers import ResponseMode, get_response_synthesizer
from document_processor import create_llama_documents, process_single_document, save_processed_chunks, load_processed_chunks
import pandas as pd
import faiss
import pickle
import os
EMBEDDING_MODEL = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
RETRIEVER_TOP_K = 10
RETRIEVER_SIMILARITY_CUTOFF = 0.7
RAG_FILES_DIR = "processed_data"
PROCESSED_DATA_FILE = "processed_data/processed_chunks.csv"
def setup_llm_settings():
embed_model = HuggingFaceEmbedding(model_name=EMBEDDING_MODEL)
Settings.embed_model = embed_model
def create_vector_index_with_faiss(documents):
setup_llm_settings()
d = 384
faiss_index = faiss.IndexFlatIP(d)
vector_store = FaissVectorStore(faiss_index=faiss_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents,
storage_context=storage_context
)
return index, faiss_index
def create_retriever(index):
return VectorIndexRetriever(
index=index,
similarity_top_k=RETRIEVER_TOP_K,
similarity_cutoff=RETRIEVER_SIMILARITY_CUTOFF
)
def create_response_synthesizer():
return get_response_synthesizer(
response_mode=ResponseMode.TREE_SUMMARIZE,
streaming=False
)
def create_query_engine(index):
retriever = create_retriever(index)
response_synthesizer = create_response_synthesizer()
return RetrieverQueryEngine(
retriever=retriever,
response_synthesizer=response_synthesizer
)
def save_rag_system(index, faiss_index, documents):
os.makedirs(RAG_FILES_DIR, exist_ok=True)
faiss.write_index(faiss_index, os.path.join(RAG_FILES_DIR, 'faiss_index.index'))
index.storage_context.persist(persist_dir=RAG_FILES_DIR)
with open(os.path.join(RAG_FILES_DIR, 'documents.pkl'), 'wb') as f:
pickle.dump(documents, f)
metadata_dict = {}
for doc in documents:
metadata_dict[doc.id_] = doc.metadata
with open(os.path.join(RAG_FILES_DIR, 'chunk_metadata.pkl'), 'wb') as f:
pickle.dump(metadata_dict, f)
config = {
'embed_model_name': EMBEDDING_MODEL,
'vector_dim': 384,
'total_documents': len(documents),
'index_type': 'faiss_flat_ip'
}
with open(os.path.join(RAG_FILES_DIR, 'config.pkl'), 'wb') as f:
pickle.dump(config, f)
def load_rag_system():
if not os.path.exists(os.path.join(RAG_FILES_DIR, 'faiss_index.index')):
return None
try:
setup_llm_settings()
faiss_index = faiss.read_index(os.path.join(RAG_FILES_DIR, 'faiss_index.index'))
vector_store = FaissVectorStore(faiss_index=faiss_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents([], storage_context=storage_context)
with open(os.path.join(RAG_FILES_DIR, 'documents.pkl'), 'rb') as f:
documents = pickle.load(f)
for doc in documents:
index.insert(doc)
query_engine = create_query_engine(index)
return query_engine
except Exception as e:
print(f"Error loading RAG system: {str(e)}")
return None
def build_rag_system(processed_chunks):
setup_llm_settings()
documents = create_llama_documents(processed_chunks)
print(f"Created {len(documents)} documents for RAG system")
index, faiss_index = create_vector_index_with_faiss(documents)
query_engine = create_query_engine(index)
save_rag_system(index, faiss_index, documents)
return query_engine
def add_new_document_to_system(file_path, existing_query_engine):
try:
new_chunks = process_single_document(file_path)
if not new_chunks:
return existing_query_engine
if os.path.exists(PROCESSED_DATA_FILE):
existing_df = load_processed_chunks(PROCESSED_DATA_FILE)
existing_chunks = existing_df.to_dict('records')
else:
existing_chunks = []
all_chunks = existing_chunks + new_chunks
save_processed_chunks(all_chunks, PROCESSED_DATA_FILE)
query_engine = build_rag_system(all_chunks)
print(f"Added {len(new_chunks)} new chunks from {os.path.basename(file_path)}")
return query_engine
except Exception as e:
print(f"Error adding new document: {str(e)}")
return existing_query_engine
def query_documents(query_engine, question):
response = query_engine.query(question)
return response
def get_response_sources(response):
sources = []
for i, node in enumerate(response.source_nodes):
source_info = {
'chunk_number': i + 1,
'section': node.metadata.get('section', 'Не указан'),
'subsection': node.metadata.get('subsection', 'Не указан'),
'chunk_id': node.metadata.get('chunk_id', 'Не указан'),
'document_id': node.metadata.get('document_id', 'Не указан'),
'txt_file_id': node.metadata.get('txt_file_id', 'Не указан'),
'file_link': node.metadata.get('file_link', 'Не указан'),
'text_preview': node.text[:200] + "..." if len(node.text) > 200 else node.text,
'score': getattr(node, 'score', 0.0)
}
sources.append(source_info)
return sources
def format_response_with_sources(response):
formatted_response = {
'answer': response.response,
'sources': get_response_sources(response)
}
return formatted_response
def test_rag_system(query_engine, test_questions):
results = []
for question in test_questions:
print(f"Question: {question}")
response = query_documents(query_engine, question)
formatted_response = format_response_with_sources(response)
print(f"Answer: {formatted_response['answer']}")
print("Sources:")
for source in formatted_response['sources']:
print(f" - Chunk {source['chunk_number']}: {source['document_id']}")
print(f" Section: {source['section']}, Subsection: {source['subsection']}")
print(f" Preview: {source['text_preview']}")
print("=" * 80)
results.append({
'question': question,
'response': formatted_response
})
return results |