Spaces:
Sleeping
Sleeping
File size: 13,038 Bytes
36eab75 34ac8e9 36eab75 1b98e0e 36eab75 1eaf3d8 36eab75 1eaf3d8 36eab75 1eaf3d8 36eab75 a50849a 1eaf3d8 36eab75 648d16e 36eab75 aa622c0 36eab75 aa622c0 36eab75 aa622c0 36eab75 aa622c0 36eab75 aa622c0 36eab75 aa622c0 36eab75 9859bf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
from llama_index.core import VectorStoreIndex, Document, StorageContext, Settings
from llama_index.vector_stores.faiss import FaissVectorStore
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.response_synthesizers import ResponseMode, get_response_synthesizer
from scripts.document_processor import create_llama_documents, process_single_document, save_processed_chunks, load_processed_chunks
import pandas as pd
import faiss
import pickle
import os
from scripts.config import *
def setup_llm_settings():
embed_model = HuggingFaceEmbedding(model_name=EMBEDDING_MODEL)
Settings.embed_model = embed_model
def create_vector_index_with_faiss(documents):
# Setup settings FIRST before creating any objects
setup_llm_settings()
d = 384 # Dimension for the embedding model
faiss_index = faiss.IndexFlatIP(d)
vector_store = FaissVectorStore(faiss_index=faiss_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
# Use the embedding model from Settings
index = VectorStoreIndex.from_documents(
documents,
storage_context=storage_context,
embed_model=Settings.embed_model # Use Settings instead of string
)
return index, faiss_index
def create_retriever(index):
return VectorIndexRetriever(
index=index,
similarity_top_k=RETRIEVER_TOP_K,
similarity_cutoff=RETRIEVER_SIMILARITY_CUTOFF
)
def create_enhanced_retriever(index, query_str=None):
"""Create retriever with score transparency"""
retriever = VectorIndexRetriever(
index=index,
similarity_top_k=RETRIEVER_TOP_K,
similarity_cutoff=RETRIEVER_SIMILARITY_CUTOFF
)
return retriever
def query_documents_with_scores(query_engine, question):
response = query_engine.query(question)
# Extract scores from source nodes
scored_sources = []
max_score = 0.0
for node in response.source_nodes:
score = getattr(node, 'score', 0.0)
max_score = max(max_score, score)
scored_sources.append({
'node': node,
'score': score,
'text_preview': node.text[:200] + "..." if len(node.text) > 200 else node.text
})
scored_sources.sort(key=lambda x: x['score'], reverse=True)
QUERY_RELEVANCE_THRESHOLD = 0.6
is_query_relevant = max_score >= QUERY_RELEVANCE_THRESHOLD
# Enhanced response object
enhanced_response = {
'original_response': response,
'answer': response.response,
'max_similarity_score': max_score,
'is_query_relevant': is_query_relevant,
'scored_sources': scored_sources,
'total_sources': len(scored_sources)
}
# If query is not relevant, modify the answer
if not is_query_relevant:
enhanced_response['answer'] = (
"На основе доступных нормативных документов я не могу дать точный ответ на ваш вопрос. "
f"Максимальная релевантность найденных документов: {max_score:.2f}. "
"Попробуйте переформулировать вопрос или быть более конкретным."
)
enhanced_response['scored_sources'] = [] # Don't show irrelevant sources
return enhanced_response
def format_enhanced_response_with_sources(enhanced_response):
"""Format response with detailed scoring info"""
sources_info = []
if enhanced_response['is_query_relevant']:
sources_info.append("📚 Источники из нормативной документации:")
sources_info.append(f"🎯 Максимальная релевантность: {enhanced_response['max_similarity_score']:.3f}")
for i, source_data in enumerate(enhanced_response['scored_sources'][:5], 1):
node = source_data['node']
score = source_data['score']
sources_info.append(f"\n{i}. Релевантность: {score:.3f}")
sources_info.append(f" Документ: {node.metadata.get('document_id', 'Неизвестен')}")
if node.metadata.get('section'):
sources_info.append(f" Раздел: {node.metadata.get('section')}")
if node.metadata.get('subsection'):
sources_info.append(f" Подраздел: {node.metadata.get('subsection')}")
sources_info.append(f" Фрагмент: ...{source_data['text_preview']}")
else:
sources_info.append("⚠️ Запрос имеет низкую релевантность к базе нормативных документов")
sources_info.append(f"🎯 Максимальная найденная релевантность: {enhanced_response['max_similarity_score']:.3f}")
sources_info.append("💡 Рекомендация: Переформулируйте вопрос более конкретно")
return {
'answer': enhanced_response['answer'],
'sources': "\n".join(sources_info),
'is_relevant': enhanced_response['is_query_relevant'],
'max_score': enhanced_response['max_similarity_score']
}
def create_response_synthesizer():
return get_response_synthesizer(
response_mode=ResponseMode.TREE_SUMMARIZE,
streaming=False
)
def create_query_engine(index):
retriever = create_retriever(index)
response_synthesizer = create_response_synthesizer()
return RetrieverQueryEngine(
retriever=retriever,
response_synthesizer=response_synthesizer
)
def save_rag_system(index, faiss_index, documents):
os.makedirs(RAG_FILES_DIR, exist_ok=True)
faiss.write_index(faiss_index, os.path.join(RAG_FILES_DIR, 'faiss_index.index'))
index.storage_context.persist(persist_dir=RAG_FILES_DIR)
with open(os.path.join(RAG_FILES_DIR, 'documents.pkl'), 'wb') as f:
pickle.dump(documents, f)
metadata_dict = {}
for doc in documents:
metadata_dict[doc.id_] = doc.metadata
with open(os.path.join(RAG_FILES_DIR, 'chunk_metadata.pkl'), 'wb') as f:
pickle.dump(metadata_dict, f)
config = {
'embed_model_name': EMBEDDING_MODEL,
'vector_dim': 384,
'total_documents': len(documents),
'index_type': 'faiss_flat_ip'
}
with open(os.path.join(RAG_FILES_DIR, 'config.pkl'), 'wb') as f:
pickle.dump(config, f)
def load_rag_system():
"""Load RAG system with better error handling and file verification"""
required_files = [
'faiss_index.index',
'default__vector_store.json',
'docstore.json',
'index_store.json'
]
# Check if all required files exist
missing_files = []
for file in required_files:
if not os.path.exists(os.path.join(RAG_FILES_DIR, file)):
missing_files.append(file)
if missing_files:
print(f"Missing RAG system files: {missing_files}")
return None
try:
setup_llm_settings()
# Load FAISS index
faiss_index = faiss.read_index(os.path.join(RAG_FILES_DIR, 'faiss_index.index'))
vector_store = FaissVectorStore(faiss_index=faiss_index)
# Load storage context from persisted files
storage_context = StorageContext.from_defaults(
vector_store=vector_store,
persist_dir=RAG_FILES_DIR
)
# Create index from storage context
index = VectorStoreIndex.from_documents(
[],
storage_context=storage_context,
embed_model=Settings.embed_model
)
# Verify the index loaded correctly
print(f"✅ RAG system loaded with {faiss_index.ntotal} vectors")
query_engine = create_query_engine(index)
return query_engine
except Exception as e:
print(f"❌ Error loading RAG system: {str(e)}")
return None
def save_rag_system(index, faiss_index, documents):
"""Enhanced save function with verification"""
try:
os.makedirs(RAG_FILES_DIR, exist_ok=True)
# Save FAISS index
faiss.write_index(faiss_index, os.path.join(RAG_FILES_DIR, 'faiss_index.index'))
# Persist storage context (saves docstore.json, index_store.json, default__vector_store.json)
index.storage_context.persist(persist_dir=RAG_FILES_DIR)
# Save documents pickle (for compatibility)
with open(os.path.join(RAG_FILES_DIR, 'documents.pkl'), 'wb') as f:
pickle.dump(documents, f)
# Save metadata pickle (for compatibility)
metadata_dict = {}
for doc in documents:
metadata_dict[doc.id_] = doc.metadata
with open(os.path.join(RAG_FILES_DIR, 'chunk_metadata.pkl'), 'wb') as f:
pickle.dump(metadata_dict, f)
# Save config
config = {
'embed_model_name': EMBEDDING_MODEL,
'vector_dim': 384,
'total_documents': len(documents),
'index_type': 'faiss_flat_ip'
}
with open(os.path.join(RAG_FILES_DIR, 'config.pkl'), 'wb') as f:
pickle.dump(config, f)
print(f"✅ RAG system saved successfully with {len(documents)} documents")
except Exception as e:
print(f"❌ Error saving RAG system: {str(e)}")
raise
def build_rag_system(processed_chunks):
setup_llm_settings()
documents = create_llama_documents(processed_chunks)
print(f"Created {len(documents)} documents for RAG system")
index, faiss_index = create_vector_index_with_faiss(documents)
query_engine = create_query_engine(index)
save_rag_system(index, faiss_index, documents)
return query_engine
def add_new_document_to_system(file_path, existing_query_engine):
try:
new_chunks = process_single_document(file_path)
if not new_chunks:
return existing_query_engine
if os.path.exists(PROCESSED_DATA_FILE):
existing_df = load_processed_chunks(PROCESSED_DATA_FILE)
existing_chunks = existing_df.to_dict('records')
else:
existing_chunks = []
all_chunks = existing_chunks + new_chunks
save_processed_chunks(all_chunks, PROCESSED_DATA_FILE)
query_engine = build_rag_system(all_chunks)
print(f"Added {len(new_chunks)} new chunks from {os.path.basename(file_path)}")
return query_engine
except Exception as e:
print(f"Error adding new document: {str(e)}")
return existing_query_engine
def query_documents(query_engine, question):
response = query_engine.query(question)
return response
def get_response_sources(response):
sources = []
for i, node in enumerate(response.source_nodes):
source_info = {
'chunk_number': i + 1,
'section': node.metadata.get('section', 'Не указан'),
'subsection': node.metadata.get('subsection', 'Не указан'),
'chunk_id': node.metadata.get('chunk_id', 'Не указан'),
'document_id': node.metadata.get('document_id', 'Не указан'),
'txt_file_id': node.metadata.get('txt_file_id', 'Не указан'),
'file_link': node.metadata.get('file_link', 'Не указан'),
'text_preview': node.text[:200] + "..." if len(node.text) > 200 else node.text,
'score': getattr(node, 'score', 0.0)
}
sources.append(source_info)
return sources
def format_response_with_sources(response):
formatted_response = {
'answer': response.response,
'sources': get_response_sources(response)
}
return formatted_response
def test_rag_system(query_engine, test_questions):
results = []
for question in test_questions:
print(f"Question: {question}")
response = query_documents(query_engine, question)
formatted_response = format_response_with_sources(response)
print(f"Answer: {formatted_response['answer']}")
print("Sources:")
for source in formatted_response['sources']:
print(f" - Chunk {source['chunk_number']}: {source['document_id']}")
print(f" Section: {source['section']}, Subsection: {source['subsection']}")
print(f" Preview: {source['text_preview']}")
print("=" * 80)
results.append({
'question': question,
'response': formatted_response
})
return results |