File size: 12,216 Bytes
34abd7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0ba8c2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import os
import re
import json
import time
import gradio as gr
import tempfile
from typing import Dict, Any, List, Optional
from transformers import AutoTokenizer
from sentence_transformers import SentenceTransformer
from pydantic import BaseModel, Field
from anthropic import Anthropic
from huggingface_hub import login
from src.prompts import SYSTEM_PROMPT, ANALYSIS_PROMPT_TEMPLATE_CLAUDE, ANALYSIS_PROMPT_TEMPLATE_GEMINI


CLAUDE_MODEL = "claude-3-5-sonnet-20241022"
OPENAI_MODEL = "gpt-4o"
GEMINI_MODEL = "gemini-2.0-flash"

DEFAULT_TEMPERATURE = 0.7

TOKENIZER_MODEL = "answerdotai/ModernBERT-base"
SENTENCE_TRANSFORMER_MODEL = "all-MiniLM-L6-v2"

hf_token = os.environ.get('HF_TOKEN', None)
login(token=hf_token)

tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_MODEL)
sentence_model = SentenceTransformer(SENTENCE_TRANSFORMER_MODEL)

class CourseInfo(BaseModel):
    course_name: str = Field(description="Name of the course")
    section_name: str = Field(description="Name of the course section")
    lesson_name: str = Field(description="Name of the lesson")

class QuizOption(BaseModel):
    text: str = Field(description="The text of the answer option")
    correct: bool = Field(description="Whether this option is correct")

class QuizQuestion(BaseModel):
    question: str = Field(description="The text of the quiz question")
    options: List[QuizOption] = Field(description="List of answer options")

class Segment(BaseModel):
    segment_number: int = Field(description="The segment number")
    topic_name: str = Field(description="Unique and specific topic name that clearly differentiates it from other segments")
    key_concepts: List[str] = Field(description="3-5 key concepts discussed in the segment")
    summary: str = Field(description="Brief summary of the segment (3-5 sentences)")
    quiz_questions: List[QuizQuestion] = Field(description="5 quiz questions based on the segment content")

class TextSegmentAnalysis(BaseModel):
    course_info: CourseInfo = Field(description="Information about the course")
    segments: List[Segment] = Field(description="List of text segments with analysis")

def clean_text(text):
    text = re.sub(r'\[speaker_\d+\]', '', text)
    text = re.sub(r'\s+', ' ', text).strip()
    return text

def split_text_by_tokens(text, max_tokens=12000):
    text = clean_text(text)
    tokens = tokenizer.encode(text)
    
    if len(tokens) <= max_tokens:
        return [text]
    
    split_point = len(tokens) // 2
    
    sentences = re.split(r'(?<=[.!?])\s+', text)
    
    first_half = []
    second_half = []
    
    current_tokens = 0
    for sentence in sentences:
        sentence_tokens = len(tokenizer.encode(sentence))
        
        if current_tokens + sentence_tokens <= split_point:
            first_half.append(sentence)
            current_tokens += sentence_tokens
        else:
            second_half.append(sentence)
    
    return [" ".join(first_half), " ".join(second_half)]



def generate_with_claude(text, api_key, course_name="", section_name="", lesson_name=""):
    client = Anthropic(api_key=api_key)
    
    segment_analysis_schema = TextSegmentAnalysis.model_json_schema()
    
    tools = [
        {
            "name": "build_segment_analysis",
            "description": "Build the text segment analysis with quiz questions",
            "input_schema": segment_analysis_schema
        }
    ]

    
    prompt = ANALYSIS_PROMPT_TEMPLATE_CLAUDE.format(
        course_name=course_name,
        section_name=section_name,
        lesson_name=lesson_name,
        text=text
    )

    try:
        response = client.messages.create(
            model=CLAUDE_MODEL,
            max_tokens=8192,
            temperature=DEFAULT_TEMPERATURE,
            system=SYSTEM_PROMPT,
            messages=[
                {
                    "role": "user",
                    "content": prompt
                }
            ],
            tools=tools,
            tool_choice={"type": "tool", "name": "build_segment_analysis"}
        )
        
        # Extract the tool call content
        if response.content and len(response.content) > 0 and hasattr(response.content[0], 'input'):
            function_call = response.content[0].input
            return function_call
        else:
            raise Exception("No valid tool call found in the response")
    except Exception as e:
        raise Exception(f"Error calling Anthropic API: {str(e)}")


def get_active_api_key(gemini_key, claude_key, language):
    if language == "Uzbek" and claude_key:
        return claude_key, "claude"
    else:
        return gemini_key, "gemini"

def segment_and_analyze_text(text: str, gemini_api_key: str, claude_api_key: str, language: str, 
                           course_name="", section_name="", lesson_name="") -> Dict[str, Any]:
    active_key, api_type = get_active_api_key(gemini_api_key, claude_api_key, language)
    
    if api_type == "claude":
        return generate_with_claude(text, active_key, course_name, section_name, lesson_name)
    
    from langchain_google_genai import ChatGoogleGenerativeAI
    os.environ["GOOGLE_API_KEY"] = active_key
    llm = ChatGoogleGenerativeAI(
        model=GEMINI_MODEL,
        temperature=DEFAULT_TEMPERATURE,
        max_retries=3
    )
    
    base_prompt = ANALYSIS_PROMPT_TEMPLATE_GEMINI.format(
        course_name=course_name,
        section_name=section_name,
        lesson_name=lesson_name,
        text=text
    )

    language_instruction = f"\nIMPORTANT: Generate ALL content (including topic names, key concepts, summaries, and quiz questions) in {language} language."
    prompt = base_prompt + language_instruction

    
    try:
        messages = [
            {"role": "system", "content": SYSTEM_PROMPT},
            {"role": "user", "content": prompt}
        ]
        
        response = llm.invoke(messages)
        
        try:
            content = response.content
            json_match = re.search(r'```json\s*([\s\S]*?)\s*```', content)
            
            if json_match:
                json_str = json_match.group(1)
            else:
                json_match = re.search(r'(\{[\s\S]*\})', content)
                if json_match:
                    json_str = json_match.group(1)
                else:
                    json_str = content
            
            # Parse the JSON
            function_call = json.loads(json_str)
            return function_call
        except json.JSONDecodeError:
            raise Exception("Could not parse JSON from LLM response")
    except Exception as e:
        raise Exception(f"Error calling API: {str(e)}")

def format_quiz_for_display(results, language="English"):
    output = []
    
    if language == "Uzbek":
        course_header = "KURS"
        section_header = "BO'LIM"
        lesson_header = "DARS"
        segment_header = "QISM"
        key_concepts_header = "ASOSIY TUSHUNCHALAR"
        summary_header = "QISQACHA MAZMUN"
        quiz_questions_header = "TEST SAVOLLARI"
    elif language == "Russian":
        course_header = "КУРС"
        section_header = "РАЗДЕЛ"
        lesson_header = "УРОК"
        segment_header = "СЕГМЕНТ"
        key_concepts_header = "КЛЮЧЕВЫЕ ПОНЯТИЯ"
        summary_header = "КРАТКОЕ СОДЕРЖАНИЕ"
        quiz_questions_header = "ТЕСТОВЫЕ ВОПРОСЫ"
    else:
        course_header = "COURSE"
        section_header = "SECTION"
        lesson_header = "LESSON"
        segment_header = "SEGMENT"
        key_concepts_header = "KEY CONCEPTS"
        summary_header = "SUMMARY"
        quiz_questions_header = "QUIZ QUESTIONS"
    
    if "course_info" in results:
        course_info = results["course_info"]
        output.append(f"{'='*40}")
        output.append(f"{course_header}: {course_info.get('course_name', 'N/A')}")
        output.append(f"{section_header}: {course_info.get('section_name', 'N/A')}")
        output.append(f"{lesson_header}: {course_info.get('lesson_name', 'N/A')}")
        output.append(f"{'='*40}\n")
    
    segments = results.get("segments", [])
    for i, segment in enumerate(segments):
        topic = segment["topic_name"]
        segment_num = i + 1 
        output.append(f"\n\n{'='*40}")
        output.append(f"{segment_header} {segment_num}: {topic}")
        output.append(f"{'='*40}\n")
        output.append(f"{key_concepts_header}:")
        for concept in segment["key_concepts"]:
            output.append(f"• {concept}")
        output.append(f"\n{summary_header}:")
        output.append(segment["summary"])
        output.append(f"\n{quiz_questions_header}:")
        for i, q in enumerate(segment["quiz_questions"]):
            output.append(f"\n{i+1}. {q['question']}")
            for j, option in enumerate(q['options']):
                letter = chr(97 + j).upper()
                correct_marker = " ✓" if option["correct"] else ""
                output.append(f"   {letter}. {option['text']}{correct_marker}")
    return "\n".join(output)

def analyze_document(text, gemini_api_key, claude_api_key, course_name, section_name, lesson_name, language):
    try:
        start_time = time.time()
        text_parts = split_text_by_tokens(text)

        input_tokens = 0        
        output_tokens = 0
        
        all_results = {
            "course_info": {
                "course_name": course_name,
                "section_name": section_name,
                "lesson_name": lesson_name
            },
            "segments": []
        }
        segment_counter = 1
        
        # Process each part of the text
        for part in text_parts:
            if language == "Uzbek" and claude_api_key:
                # from prompts import ANALYSIS_PROMPT_TEMPLATE_CLAUDE
                prompt_template = ANALYSIS_PROMPT_TEMPLATE_CLAUDE
            else:
                # from prompts import ANALYSIS_PROMPT_TEMPLATE_GEMINI
                prompt_template = ANALYSIS_PROMPT_TEMPLATE_GEMINI
                
            # Format the prompt with actual values
            actual_prompt = prompt_template.format(
                course_name=course_name,
                section_name=section_name,
                lesson_name=lesson_name,
                text=part
            )

            prompt_tokens = len(tokenizer.encode(actual_prompt))
            input_tokens += prompt_tokens

            
            analysis = segment_and_analyze_text(
                text, 
                gemini_api_key,
                claude_api_key,
                language,
                course_name=course_name, 
                section_name=section_name, 
                lesson_name=lesson_name
            )

            
            if "segments" in analysis:
                for segment in analysis["segments"]:
                    segment["segment_number"] = segment_counter
                    all_results["segments"].append(segment)
                    segment_counter += 1
        
        end_time = time.time()
        total_time = end_time - start_time
        print(f"Total quiz processing time: {total_time}s")


        formatted_output = format_quiz_for_display(all_results, language)
        output_tokens = len(tokenizer.encode(formatted_output))

        
        token_info = f"Input tokens: {input_tokens}\nOutput tokens: {output_tokens}\nTotal tokens: {input_tokens + output_tokens}\n"
        formatted_text = format_quiz_for_display(all_results, language)
        formatted_text = f"Total quiz Processing time: {total_time:.2f}s\n{token_info}\n" + formatted_text

        output_tokens = len(tokenizer.encode(formatted_output))         
        json_path = tempfile.mktemp(suffix='.json')
        with open(json_path, 'w', encoding='utf-8') as json_file:
            json.dump(all_results, json_file, indent=2)
        
        txt_path = tempfile.mktemp(suffix='.txt')
        with open(txt_path, 'w', encoding='utf-8') as txt_file:
            txt_file.write(formatted_text)
            
        return formatted_text, json_path, txt_path
    except Exception as e:
        error_message = f"Error processing document: {str(e)}"
        return error_message, None, None