File size: 5,082 Bytes
fb30cb6
 
 
 
 
 
 
 
 
b33d088
fb30cb6
b95210f
fb30cb6
 
 
b95210f
 
 
fb30cb6
 
b95210f
 
 
 
 
 
 
 
 
70a9dce
 
 
03b33e1
fb30cb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45e4719
 
 
 
 
 
 
fb30cb6
 
3467e62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b95210f
3467e62
 
a84704e
 
3467e62
a84704e
 
 
 
 
3467e62
abd413f
 
 
 
3467e62
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import json
import torch
import requests
import time
import random
from PIL import Image
from typing import Union
import os

device = "cuda"
print(f"Using {device}" if device != "cpu" else "Using CPU")

def _load_model():
    tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2", trust_remote_code=True, revision="2024-05-08", torch_dtype=(torch.bfloat16 if device == 'cuda' else torch.float32))
    model = AutoModelForCausalLM.from_pretrained("vikhyatk/moondream2", device_map=device, trust_remote_code=True, revision="2024-05-08")
    return (model, tokenizer)

class MoonDream():
    def __init__(self, model=None, tokenizer=None):
        self.model, self.tokenizer = (model, tokenizer)
        if not model or model is None or not tokenizer or tokenizer is None:
            self.model, self.tokenizer = _load_model()
        self.device = device
        self.model.to(self.device)
    def __call__(self, question, imgs):
        imn = 0
        for img in imgs:
            img = self.model.encode_image(img)
            res = self.model.answer_question(question=question, image_embeds=img, tokenizer=self.tokenizer)
            yield res
        return

def _respond_one(question, img):
  txt = ""
  yield (txt := txt + MoonDream()(question, [img]))
  return txt

def respond_batch(question, **imgs):
  md = MoonDream()
  for img in imgs.values():
    res = md(question, img)
    for r in res:
      yield r
    yield "\n\n\n\n\n\n"
  return

red = Image.new("RGB", (192,192), (255,0,0))
green = Image.new("RGB", (192,192), (0,255,0))
blue = Image.new("RGB", (192,192), (0,0,255))
res = respond_batch("What color is this? Elaborate upon what emotion registers most strongly with you upon viewing. ", imgs=[red, green, blue])
for r in res:
  print(r)
  if "\n\n\n\n\n\n" in r:
    break

def dual_images(img1: Image):
  # Ran once for each img to it's respective output. Output should be detailed str of description/feature extraction/interrogation.
  md = MoonDream()
  res = md("Describe the image in plain english ", [img1])
  txt = ""
  for r in res:
    yield (txt := txt + r)
  return

import os

def merge_descriptions_to_prompt(mi, d1, d2):
  from together import Together
  tog = Together(api_key=os.getenv("TOGETHER_KEY"))
  res = tog.completions.create(prompt=f"""Describe what would result if the following two descriptions were describing one thing.
### Description 1:
```text
{d1}
```
### Description 2:
```text
{d2}
```
Merge-Specific Instructions:
```text
{mi}
```
Ensure you end your output with ```\\n
---
Complete Description:
```text""", model="meta-llama/Meta-Llama-3-70B", stop=["```"], max_tokens=1024)
  return res.choices[0].text.split("```")[0]

def xform_image_description(img, inst):
    #md = MoonDream()
    from together import Together
    desc = dual_images(img)
    tog = Together(api_key=os.getenv("TOGETHER_KEY"))
    prompt=f"""Describe the image in aggressively verbose detail. I must know every freckle upon a man's brow and each blade of the grass intimately.\nDescription: ```text\n{desc}\n```\nInstructions:\n```text\n{inst}\n```\n\n\n---\nDetailed Description:\n```text"""
    res = tog.completions.create(prompt=prompt, model="meta-llama/Meta-Llama-3-70B", stop=["```"], max_tokens=1024)
    return res.choices[0].text[len(prompt):].split("```")[0]

with gr.Blocks() as demo:
    with gr.Row(visible=True):
        with gr.Row():
            img = gr.Image(label="images", type='pil')
        with gr.Row():
            btn = gr.Button("submit")
        with gr.Row():
            otpt = gr.Textbox(label="output", lines=3, interactive=True)
        with gr.Row():
            with gr.Column():
                im1 = gr.Image(label="image 1", type='pil')
                otp2 = gr.Textbox(label="image 1", interactive=True)
            with gr.Column():
                im2 = gr.Image(label="image 2", type='pil')
                otp3 = gr.Textbox(label="image 2")
        with gr.Row():
            minst = gr.Textbox(label="Merge Instructions")
        with gr.Row():
            btn2 = gr.Button("submit batch")
        with gr.Row():
            with gr.Column():
                im1 = gr.Image(label="image 1", type='pil')
                otp2 = gr.Textbox(label="individual batch output (left)", interactive=True)
            with gr.Column():
                im2 = gr.Image(label="image 2", type='pil')
                otp3 = gr.Textbox(label="individual batch output (right)", interactive=True)
        with gr.Row():
                otp4 = gr.Textbox(label="batch output ( combined )", interactive=True, lines=4)
        with gr.Row():
            btn_scd = gr.Button("Merge Descriptions to Single Combined Description")
    btn2.click(dual_images, inputs=[im1], outputs=[otp2])
    btn2.click(dual_images, inputs=[im2], outputs=[otp3])
    btn.click(dual_images, inputs=[img], outputs=[otpt])
    btn_scd.click(merge_descriptions_to_prompt, inputs=[minst, otp2, otp3], outputs=[otp4])
    
    demo.launch(debug=True, share=True)