Spaces:
Runtime error
Runtime error
File size: 25,433 Bytes
113c29e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 |
import psutil
from enum import Enum
from ldm_patched.modules.args_parser import args
import ldm_patched.modules.utils
import torch
import sys
class VRAMState(Enum):
DISABLED = 0 #No vram present: no need to move models to vram
NO_VRAM = 1 #Very low vram: enable all the options to save vram
LOW_VRAM = 2
NORMAL_VRAM = 3
HIGH_VRAM = 4
SHARED = 5 #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
class CPUState(Enum):
GPU = 0
CPU = 1
MPS = 2
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
cpu_state = CPUState.GPU
total_vram = 0
lowvram_available = True
xpu_available = False
if args.pytorch_deterministic:
print("Using deterministic algorithms for pytorch")
torch.use_deterministic_algorithms(True, warn_only=True)
directml_enabled = False
if args.directml is not None:
import torch_directml
directml_enabled = True
device_index = args.directml
if device_index < 0:
directml_device = torch_directml.device()
else:
directml_device = torch_directml.device(device_index)
print("Using directml with device:", torch_directml.device_name(device_index))
# torch_directml.disable_tiled_resources(True)
lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
try:
import intel_extension_for_pytorch as ipex
if torch.xpu.is_available():
xpu_available = True
except:
pass
try:
if torch.backends.mps.is_available():
cpu_state = CPUState.MPS
import torch.mps
except:
pass
if args.always_cpu:
if args.always_cpu > 0:
torch.set_num_threads(args.always_cpu)
print(f"Running on {torch.get_num_threads()} CPU threads")
cpu_state = CPUState.CPU
def is_intel_xpu():
global cpu_state
global xpu_available
if cpu_state == CPUState.GPU:
if xpu_available:
return True
return False
def get_torch_device():
global directml_enabled
global cpu_state
if directml_enabled:
global directml_device
return directml_device
if cpu_state == CPUState.MPS:
return torch.device("mps")
if cpu_state == CPUState.CPU:
return torch.device("cpu")
else:
if is_intel_xpu():
return torch.device("xpu")
else:
return torch.device(torch.cuda.current_device())
def get_total_memory(dev=None, torch_total_too=False):
global directml_enabled
if dev is None:
dev = get_torch_device()
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
mem_total = psutil.virtual_memory().total
mem_total_torch = mem_total
else:
if directml_enabled:
mem_total = 1024 * 1024 * 1024 #TODO
mem_total_torch = mem_total
elif is_intel_xpu():
stats = torch.xpu.memory_stats(dev)
mem_reserved = stats['reserved_bytes.all.current']
mem_total = torch.xpu.get_device_properties(dev).total_memory
mem_total_torch = mem_reserved
else:
stats = torch.cuda.memory_stats(dev)
mem_reserved = stats['reserved_bytes.all.current']
_, mem_total_cuda = torch.cuda.mem_get_info(dev)
mem_total_torch = mem_reserved
mem_total = mem_total_cuda
if torch_total_too:
return (mem_total, mem_total_torch)
else:
return mem_total
total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
if not args.always_normal_vram and not args.always_cpu:
if lowvram_available and total_vram <= 4096:
print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --always-normal-vram")
set_vram_to = VRAMState.LOW_VRAM
try:
OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
OOM_EXCEPTION = Exception
XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
if args.disable_xformers:
XFORMERS_IS_AVAILABLE = False
else:
try:
import xformers
import xformers.ops
XFORMERS_IS_AVAILABLE = True
try:
XFORMERS_IS_AVAILABLE = xformers._has_cpp_library
except:
pass
try:
XFORMERS_VERSION = xformers.version.__version__
print("xformers version:", XFORMERS_VERSION)
if XFORMERS_VERSION.startswith("0.0.18"):
print()
print("WARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
print("Please downgrade or upgrade xformers to a different version.")
print()
XFORMERS_ENABLED_VAE = False
except:
pass
except:
XFORMERS_IS_AVAILABLE = False
def is_nvidia():
global cpu_state
if cpu_state == CPUState.GPU:
if torch.version.cuda:
return True
return False
ENABLE_PYTORCH_ATTENTION = False
if args.attention_pytorch:
ENABLE_PYTORCH_ATTENTION = True
XFORMERS_IS_AVAILABLE = False
VAE_DTYPE = torch.float32
try:
if is_nvidia():
torch_version = torch.version.__version__
if int(torch_version[0]) >= 2:
if ENABLE_PYTORCH_ATTENTION == False and args.attention_split == False and args.attention_quad == False:
ENABLE_PYTORCH_ATTENTION = True
if torch.cuda.is_bf16_supported() and torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 8:
VAE_DTYPE = torch.bfloat16
if is_intel_xpu():
if args.attention_split == False and args.attention_quad == False:
ENABLE_PYTORCH_ATTENTION = True
except:
pass
if is_intel_xpu():
VAE_DTYPE = torch.bfloat16
if args.vae_in_cpu:
VAE_DTYPE = torch.float32
if args.vae_in_fp16:
VAE_DTYPE = torch.float16
elif args.vae_in_bf16:
VAE_DTYPE = torch.bfloat16
elif args.vae_in_fp32:
VAE_DTYPE = torch.float32
if ENABLE_PYTORCH_ATTENTION:
torch.backends.cuda.enable_math_sdp(True)
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_mem_efficient_sdp(True)
if args.always_low_vram:
set_vram_to = VRAMState.LOW_VRAM
lowvram_available = True
elif args.always_no_vram:
set_vram_to = VRAMState.NO_VRAM
elif args.always_high_vram or args.always_gpu:
vram_state = VRAMState.HIGH_VRAM
FORCE_FP32 = False
FORCE_FP16 = False
if args.all_in_fp32:
print("Forcing FP32, if this improves things please report it.")
FORCE_FP32 = True
if args.all_in_fp16:
print("Forcing FP16.")
FORCE_FP16 = True
if lowvram_available:
if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
vram_state = set_vram_to
if cpu_state != CPUState.GPU:
vram_state = VRAMState.DISABLED
if cpu_state == CPUState.MPS:
vram_state = VRAMState.SHARED
print(f"Set vram state to: {vram_state.name}")
ALWAYS_VRAM_OFFLOAD = args.always_offload_from_vram
if ALWAYS_VRAM_OFFLOAD:
print("Always offload VRAM")
def get_torch_device_name(device):
if hasattr(device, 'type'):
if device.type == "cuda":
try:
allocator_backend = torch.cuda.get_allocator_backend()
except:
allocator_backend = ""
return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
else:
return "{}".format(device.type)
elif is_intel_xpu():
return "{} {}".format(device, torch.xpu.get_device_name(device))
else:
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
try:
print("Device:", get_torch_device_name(get_torch_device()))
except:
print("Could not pick default device.")
print("VAE dtype:", VAE_DTYPE)
current_loaded_models = []
def module_size(module):
module_mem = 0
sd = module.state_dict()
for k in sd:
t = sd[k]
module_mem += t.nelement() * t.element_size()
return module_mem
class LoadedModel:
def __init__(self, model):
self.model = model
self.model_accelerated = False
self.device = model.load_device
def model_memory(self):
return self.model.model_size()
def model_memory_required(self, device):
if device == self.model.current_device:
return 0
else:
return self.model_memory()
def model_load(self, lowvram_model_memory=0):
patch_model_to = None
if lowvram_model_memory == 0:
patch_model_to = self.device
self.model.model_patches_to(self.device)
self.model.model_patches_to(self.model.model_dtype())
try:
self.real_model = self.model.patch_model(device_to=patch_model_to) #TODO: do something with loras and offloading to CPU
except Exception as e:
self.model.unpatch_model(self.model.offload_device)
self.model_unload()
raise e
if lowvram_model_memory > 0:
print("loading in lowvram mode", lowvram_model_memory/(1024 * 1024))
mem_counter = 0
for m in self.real_model.modules():
if hasattr(m, "ldm_patched_cast_weights"):
m.prev_ldm_patched_cast_weights = m.ldm_patched_cast_weights
m.ldm_patched_cast_weights = True
module_mem = module_size(m)
if mem_counter + module_mem < lowvram_model_memory:
m.to(self.device)
mem_counter += module_mem
elif hasattr(m, "weight"): #only modules with ldm_patched_cast_weights can be set to lowvram mode
m.to(self.device)
mem_counter += module_size(m)
print("lowvram: loaded module regularly", m)
self.model_accelerated = True
if is_intel_xpu() and not args.disable_ipex_hijack:
self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True)
return self.real_model
def model_unload(self):
if self.model_accelerated:
for m in self.real_model.modules():
if hasattr(m, "prev_ldm_patched_cast_weights"):
m.ldm_patched_cast_weights = m.prev_ldm_patched_cast_weights
del m.prev_ldm_patched_cast_weights
self.model_accelerated = False
self.model.unpatch_model(self.model.offload_device)
self.model.model_patches_to(self.model.offload_device)
def __eq__(self, other):
return self.model is other.model
def minimum_inference_memory():
return (1024 * 1024 * 1024)
def unload_model_clones(model):
to_unload = []
for i in range(len(current_loaded_models)):
if model.is_clone(current_loaded_models[i].model):
to_unload = [i] + to_unload
for i in to_unload:
print("unload clone", i)
current_loaded_models.pop(i).model_unload()
def free_memory(memory_required, device, keep_loaded=[]):
unloaded_model = False
for i in range(len(current_loaded_models) -1, -1, -1):
if not ALWAYS_VRAM_OFFLOAD:
if get_free_memory(device) > memory_required:
break
shift_model = current_loaded_models[i]
if shift_model.device == device:
if shift_model not in keep_loaded:
m = current_loaded_models.pop(i)
m.model_unload()
del m
unloaded_model = True
if unloaded_model:
soft_empty_cache()
else:
if vram_state != VRAMState.HIGH_VRAM:
mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True)
if mem_free_torch > mem_free_total * 0.25:
soft_empty_cache()
def load_models_gpu(models, memory_required=0):
global vram_state
inference_memory = minimum_inference_memory()
extra_mem = max(inference_memory, memory_required)
models_to_load = []
models_already_loaded = []
for x in models:
loaded_model = LoadedModel(x)
if loaded_model in current_loaded_models:
index = current_loaded_models.index(loaded_model)
current_loaded_models.insert(0, current_loaded_models.pop(index))
models_already_loaded.append(loaded_model)
else:
if hasattr(x, "model"):
print(f"Requested to load {x.model.__class__.__name__}")
models_to_load.append(loaded_model)
if len(models_to_load) == 0:
devs = set(map(lambda a: a.device, models_already_loaded))
for d in devs:
if d != torch.device("cpu"):
free_memory(extra_mem, d, models_already_loaded)
return
print(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")
total_memory_required = {}
for loaded_model in models_to_load:
unload_model_clones(loaded_model.model)
total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
for device in total_memory_required:
if device != torch.device("cpu"):
free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
for loaded_model in models_to_load:
model = loaded_model.model
torch_dev = model.load_device
if is_device_cpu(torch_dev):
vram_set_state = VRAMState.DISABLED
else:
vram_set_state = vram_state
lowvram_model_memory = 0
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
model_size = loaded_model.model_memory_required(torch_dev)
current_free_mem = get_free_memory(torch_dev)
lowvram_model_memory = int(max(64 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary
vram_set_state = VRAMState.LOW_VRAM
else:
lowvram_model_memory = 0
if vram_set_state == VRAMState.NO_VRAM:
lowvram_model_memory = 64 * 1024 * 1024
cur_loaded_model = loaded_model.model_load(lowvram_model_memory)
current_loaded_models.insert(0, loaded_model)
return
def load_model_gpu(model):
return load_models_gpu([model])
def cleanup_models():
to_delete = []
for i in range(len(current_loaded_models)):
if sys.getrefcount(current_loaded_models[i].model) <= 2:
to_delete = [i] + to_delete
for i in to_delete:
x = current_loaded_models.pop(i)
x.model_unload()
del x
def dtype_size(dtype):
dtype_size = 4
if dtype == torch.float16 or dtype == torch.bfloat16:
dtype_size = 2
elif dtype == torch.float32:
dtype_size = 4
else:
try:
dtype_size = dtype.itemsize
except: #Old pytorch doesn't have .itemsize
pass
return dtype_size
def unet_offload_device():
if vram_state == VRAMState.HIGH_VRAM:
return get_torch_device()
else:
return torch.device("cpu")
def unet_inital_load_device(parameters, dtype):
torch_dev = get_torch_device()
if vram_state == VRAMState.HIGH_VRAM:
return torch_dev
cpu_dev = torch.device("cpu")
if ALWAYS_VRAM_OFFLOAD:
return cpu_dev
model_size = dtype_size(dtype) * parameters
mem_dev = get_free_memory(torch_dev)
mem_cpu = get_free_memory(cpu_dev)
if mem_dev > mem_cpu and model_size < mem_dev:
return torch_dev
else:
return cpu_dev
def unet_dtype(device=None, model_params=0):
if args.unet_in_bf16:
return torch.bfloat16
if args.unet_in_fp16:
return torch.float16
if args.unet_in_fp8_e4m3fn:
return torch.float8_e4m3fn
if args.unet_in_fp8_e5m2:
return torch.float8_e5m2
if should_use_fp16(device=device, model_params=model_params):
return torch.float16
return torch.float32
# None means no manual cast
def unet_manual_cast(weight_dtype, inference_device):
if weight_dtype == torch.float32:
return None
fp16_supported = ldm_patched.modules.model_management.should_use_fp16(inference_device, prioritize_performance=False)
if fp16_supported and weight_dtype == torch.float16:
return None
if fp16_supported:
return torch.float16
else:
return torch.float32
def text_encoder_offload_device():
if args.always_gpu:
return get_torch_device()
else:
return torch.device("cpu")
def text_encoder_device():
if args.always_gpu:
return get_torch_device()
elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
if is_intel_xpu():
return torch.device("cpu")
if should_use_fp16(prioritize_performance=False):
return get_torch_device()
else:
return torch.device("cpu")
else:
return torch.device("cpu")
def text_encoder_dtype(device=None):
if args.clip_in_fp8_e4m3fn:
return torch.float8_e4m3fn
elif args.clip_in_fp8_e5m2:
return torch.float8_e5m2
elif args.clip_in_fp16:
return torch.float16
elif args.clip_in_fp32:
return torch.float32
if is_device_cpu(device):
return torch.float16
if should_use_fp16(device, prioritize_performance=False):
return torch.float16
else:
return torch.float32
def intermediate_device():
if args.always_gpu:
return get_torch_device()
else:
return torch.device("cpu")
def vae_device():
if args.vae_in_cpu:
return torch.device("cpu")
return get_torch_device()
def vae_offload_device():
if args.always_gpu:
return get_torch_device()
else:
return torch.device("cpu")
def vae_dtype():
global VAE_DTYPE
return VAE_DTYPE
def get_autocast_device(dev):
if hasattr(dev, 'type'):
return dev.type
return "cuda"
def supports_dtype(device, dtype): #TODO
if dtype == torch.float32:
return True
if is_device_cpu(device):
return False
if dtype == torch.float16:
return True
if dtype == torch.bfloat16:
return True
return False
def device_supports_non_blocking(device):
if is_device_mps(device):
return False #pytorch bug? mps doesn't support non blocking
return True
def cast_to_device(tensor, device, dtype, copy=False):
device_supports_cast = False
if tensor.dtype == torch.float32 or tensor.dtype == torch.float16:
device_supports_cast = True
elif tensor.dtype == torch.bfloat16:
if hasattr(device, 'type') and device.type.startswith("cuda"):
device_supports_cast = True
elif is_intel_xpu():
device_supports_cast = True
non_blocking = device_supports_non_blocking(device)
if device_supports_cast:
if copy:
if tensor.device == device:
return tensor.to(dtype, copy=copy, non_blocking=non_blocking)
return tensor.to(device, copy=copy, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
else:
return tensor.to(device, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
else:
return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking)
def xformers_enabled():
global directml_enabled
global cpu_state
if cpu_state != CPUState.GPU:
return False
if is_intel_xpu():
return False
if directml_enabled:
return False
return XFORMERS_IS_AVAILABLE
def xformers_enabled_vae():
enabled = xformers_enabled()
if not enabled:
return False
return XFORMERS_ENABLED_VAE
def pytorch_attention_enabled():
global ENABLE_PYTORCH_ATTENTION
return ENABLE_PYTORCH_ATTENTION
def pytorch_attention_flash_attention():
global ENABLE_PYTORCH_ATTENTION
if ENABLE_PYTORCH_ATTENTION:
#TODO: more reliable way of checking for flash attention?
if is_nvidia(): #pytorch flash attention only works on Nvidia
return True
return False
def get_free_memory(dev=None, torch_free_too=False):
global directml_enabled
if dev is None:
dev = get_torch_device()
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
mem_free_total = psutil.virtual_memory().available
mem_free_torch = mem_free_total
else:
if directml_enabled:
mem_free_total = 1024 * 1024 * 1024 #TODO
mem_free_torch = mem_free_total
elif is_intel_xpu():
stats = torch.xpu.memory_stats(dev)
mem_active = stats['active_bytes.all.current']
mem_allocated = stats['allocated_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_torch = mem_reserved - mem_active
mem_free_total = torch.xpu.get_device_properties(dev).total_memory - mem_allocated
else:
stats = torch.cuda.memory_stats(dev)
mem_active = stats['active_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
if torch_free_too:
return (mem_free_total, mem_free_torch)
else:
return mem_free_total
def cpu_mode():
global cpu_state
return cpu_state == CPUState.CPU
def mps_mode():
global cpu_state
return cpu_state == CPUState.MPS
def is_device_cpu(device):
if hasattr(device, 'type'):
if (device.type == 'cpu'):
return True
return False
def is_device_mps(device):
if hasattr(device, 'type'):
if (device.type == 'mps'):
return True
return False
def should_use_fp16(device=None, model_params=0, prioritize_performance=True):
global directml_enabled
if device is not None:
if is_device_cpu(device):
return False
if FORCE_FP16:
return True
if device is not None: #TODO
if is_device_mps(device):
return False
if FORCE_FP32:
return False
if directml_enabled:
return False
if cpu_mode() or mps_mode():
return False #TODO ?
if is_intel_xpu():
return True
if torch.cuda.is_bf16_supported():
return True
props = torch.cuda.get_device_properties("cuda")
if props.major < 6:
return False
fp16_works = False
#FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
#when the model doesn't actually fit on the card
#TODO: actually test if GP106 and others have the same type of behavior
nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050"]
for x in nvidia_10_series:
if x in props.name.lower():
fp16_works = True
if fp16_works:
free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
if (not prioritize_performance) or model_params * 4 > free_model_memory:
return True
if props.major < 7:
return False
#FP16 is just broken on these cards
nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"]
for x in nvidia_16_series:
if x in props.name:
return False
return True
def soft_empty_cache(force=False):
global cpu_state
if cpu_state == CPUState.MPS:
torch.mps.empty_cache()
elif is_intel_xpu():
torch.xpu.empty_cache()
elif torch.cuda.is_available():
if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def unload_all_models():
free_memory(1e30, get_torch_device())
def resolve_lowvram_weight(weight, model, key): #TODO: remove
return weight
#TODO: might be cleaner to put this somewhere else
import threading
class InterruptProcessingException(Exception):
pass
interrupt_processing_mutex = threading.RLock()
interrupt_processing = False
def interrupt_current_processing(value=True):
global interrupt_processing
global interrupt_processing_mutex
with interrupt_processing_mutex:
interrupt_processing = value
def processing_interrupted():
global interrupt_processing
global interrupt_processing_mutex
with interrupt_processing_mutex:
return interrupt_processing
def throw_exception_if_processing_interrupted():
global interrupt_processing
global interrupt_processing_mutex
with interrupt_processing_mutex:
if interrupt_processing:
interrupt_processing = False
raise InterruptProcessingException()
|