File size: 9,469 Bytes
113c29e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# original source:
#   https://github.com/AminRezaei0x443/memory-efficient-attention/blob/1bc0d9e6ac5f82ea43a375135c4e1d3896ee1694/memory_efficient_attention/attention_torch.py
# license:
#   MIT
# credit:
#   Amin Rezaei (original author)
#   Alex Birch (optimized algorithm for 3D tensors, at the expense of removing bias, masking and callbacks)
# implementation of:
#   Self-attention Does Not Need O(n2) Memory":
#   https://arxiv.org/abs/2112.05682v2

from functools import partial
import torch
from torch import Tensor
from torch.utils.checkpoint import checkpoint
import math

try:
	from typing import Optional, NamedTuple, List, Protocol
except ImportError:
	from typing import Optional, NamedTuple, List
	from typing_extensions import Protocol

from torch import Tensor
from typing import List

from ldm_patched.modules import model_management

def dynamic_slice(
    x: Tensor,
    starts: List[int],
    sizes: List[int],
) -> Tensor:
    slicing = [slice(start, start + size) for start, size in zip(starts, sizes)]
    return x[slicing]

class AttnChunk(NamedTuple):
    exp_values: Tensor
    exp_weights_sum: Tensor
    max_score: Tensor

class SummarizeChunk(Protocol):
    @staticmethod
    def __call__(
        query: Tensor,
        key_t: Tensor,
        value: Tensor,
    ) -> AttnChunk: ...

class ComputeQueryChunkAttn(Protocol):
    @staticmethod
    def __call__(
        query: Tensor,
        key_t: Tensor,
        value: Tensor,
    ) -> Tensor: ...

def _summarize_chunk(
    query: Tensor,
    key_t: Tensor,
    value: Tensor,
    scale: float,
    upcast_attention: bool,
    mask,
) -> AttnChunk:
    if upcast_attention:
        with torch.autocast(enabled=False, device_type = 'cuda'):
            query = query.float()
            key_t = key_t.float()
            attn_weights = torch.baddbmm(
                torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
                query,
                key_t,
                alpha=scale,
                beta=0,
            )
    else:
        attn_weights = torch.baddbmm(
            torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
            query,
            key_t,
            alpha=scale,
            beta=0,
        )
    max_score, _ = torch.max(attn_weights, -1, keepdim=True)
    max_score = max_score.detach()
    attn_weights -= max_score
    if mask is not None:
        attn_weights += mask
    torch.exp(attn_weights, out=attn_weights)
    exp_weights = attn_weights.to(value.dtype)
    exp_values = torch.bmm(exp_weights, value)
    max_score = max_score.squeeze(-1)
    return AttnChunk(exp_values, exp_weights.sum(dim=-1), max_score)

def _query_chunk_attention(
    query: Tensor,
    key_t: Tensor,
    value: Tensor,
    summarize_chunk: SummarizeChunk,
    kv_chunk_size: int,
    mask,
) -> Tensor:
    batch_x_heads, k_channels_per_head, k_tokens = key_t.shape
    _, _, v_channels_per_head = value.shape

    def chunk_scanner(chunk_idx: int, mask) -> AttnChunk:
        key_chunk = dynamic_slice(
            key_t,
            (0, 0, chunk_idx),
            (batch_x_heads, k_channels_per_head, kv_chunk_size)
        )
        value_chunk = dynamic_slice(
            value,
            (0, chunk_idx, 0),
            (batch_x_heads, kv_chunk_size, v_channels_per_head)
        )
        if mask is not None:
            mask = mask[:,:,chunk_idx:chunk_idx + kv_chunk_size]

        return summarize_chunk(query, key_chunk, value_chunk, mask=mask)

    chunks: List[AttnChunk] = [
        chunk_scanner(chunk, mask) for chunk in torch.arange(0, k_tokens, kv_chunk_size)
    ]
    acc_chunk = AttnChunk(*map(torch.stack, zip(*chunks)))
    chunk_values, chunk_weights, chunk_max = acc_chunk

    global_max, _ = torch.max(chunk_max, 0, keepdim=True)
    max_diffs = torch.exp(chunk_max - global_max)
    chunk_values *= torch.unsqueeze(max_diffs, -1)
    chunk_weights *= max_diffs

    all_values = chunk_values.sum(dim=0)
    all_weights = torch.unsqueeze(chunk_weights, -1).sum(dim=0)
    return all_values / all_weights

# TODO: refactor CrossAttention#get_attention_scores to share code with this
def _get_attention_scores_no_kv_chunking(
    query: Tensor,
    key_t: Tensor,
    value: Tensor,
    scale: float,
    upcast_attention: bool,
    mask,
) -> Tensor:
    if upcast_attention:
        with torch.autocast(enabled=False, device_type = 'cuda'):
            query = query.float()
            key_t = key_t.float()
            attn_scores = torch.baddbmm(
                torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
                query,
                key_t,
                alpha=scale,
                beta=0,
            )
    else:
        attn_scores = torch.baddbmm(
            torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
            query,
            key_t,
            alpha=scale,
            beta=0,
        )

    if mask is not None:
        attn_scores += mask
    try:
        attn_probs = attn_scores.softmax(dim=-1)
        del attn_scores
    except model_management.OOM_EXCEPTION:
        print("ran out of memory while running softmax in  _get_attention_scores_no_kv_chunking, trying slower in place softmax instead")
        attn_scores -= attn_scores.max(dim=-1, keepdim=True).values
        torch.exp(attn_scores, out=attn_scores)
        summed = torch.sum(attn_scores, dim=-1, keepdim=True)
        attn_scores /= summed
        attn_probs = attn_scores

    hidden_states_slice = torch.bmm(attn_probs.to(value.dtype), value)
    return hidden_states_slice

class ScannedChunk(NamedTuple):
    chunk_idx: int
    attn_chunk: AttnChunk

def efficient_dot_product_attention(
    query: Tensor,
    key_t: Tensor,
    value: Tensor,
    query_chunk_size=1024,
    kv_chunk_size: Optional[int] = None,
    kv_chunk_size_min: Optional[int] = None,
    use_checkpoint=True,
    upcast_attention=False,
    mask = None,
):
    """Computes efficient dot-product attention given query, transposed key, and value.
      This is efficient version of attention presented in
      https://arxiv.org/abs/2112.05682v2 which comes with O(sqrt(n)) memory requirements.
      Args:
        query: queries for calculating attention with shape of
          `[batch * num_heads, tokens, channels_per_head]`.
        key_t: keys for calculating attention with shape of
          `[batch * num_heads, channels_per_head, tokens]`.
        value: values to be used in attention with shape of
          `[batch * num_heads, tokens, channels_per_head]`.
        query_chunk_size: int: query chunks size
        kv_chunk_size: Optional[int]: key/value chunks size. if None: defaults to sqrt(key_tokens)
        kv_chunk_size_min: Optional[int]: key/value minimum chunk size. only considered when kv_chunk_size is None. changes `sqrt(key_tokens)` into `max(sqrt(key_tokens), kv_chunk_size_min)`, to ensure our chunk sizes don't get too small (smaller chunks = more chunks = less concurrent work done).
        use_checkpoint: bool: whether to use checkpointing (recommended True for training, False for inference)
      Returns:
        Output of shape `[batch * num_heads, query_tokens, channels_per_head]`.
      """
    batch_x_heads, q_tokens, q_channels_per_head = query.shape
    _, _, k_tokens = key_t.shape
    scale = q_channels_per_head ** -0.5

    kv_chunk_size = min(kv_chunk_size or int(math.sqrt(k_tokens)), k_tokens)
    if kv_chunk_size_min is not None:
        kv_chunk_size = max(kv_chunk_size, kv_chunk_size_min)

    if mask is not None and len(mask.shape) == 2:
        mask = mask.unsqueeze(0)

    def get_query_chunk(chunk_idx: int) -> Tensor:
        return dynamic_slice(
            query,
            (0, chunk_idx, 0),
            (batch_x_heads, min(query_chunk_size, q_tokens), q_channels_per_head)
        )

    def get_mask_chunk(chunk_idx: int) -> Tensor:
        if mask is None:
            return None
        chunk = min(query_chunk_size, q_tokens)
        return mask[:,chunk_idx:chunk_idx + chunk]

    summarize_chunk: SummarizeChunk = partial(_summarize_chunk, scale=scale, upcast_attention=upcast_attention)
    summarize_chunk: SummarizeChunk = partial(checkpoint, summarize_chunk) if use_checkpoint else summarize_chunk
    compute_query_chunk_attn: ComputeQueryChunkAttn = partial(
        _get_attention_scores_no_kv_chunking,
        scale=scale,
        upcast_attention=upcast_attention
    ) if k_tokens <= kv_chunk_size else (
        # fast-path for when there's just 1 key-value chunk per query chunk (this is just sliced attention btw)
        partial(
            _query_chunk_attention,
            kv_chunk_size=kv_chunk_size,
            summarize_chunk=summarize_chunk,
        )
    )

    if q_tokens <= query_chunk_size:
        # fast-path for when there's just 1 query chunk
        return compute_query_chunk_attn(
            query=query,
            key_t=key_t,
            value=value,
            mask=mask,
        )
    
    # TODO: maybe we should use torch.empty_like(query) to allocate storage in-advance,
    # and pass slices to be mutated, instead of torch.cat()ing the returned slices
    res = torch.cat([
        compute_query_chunk_attn(
            query=get_query_chunk(i * query_chunk_size),
            key_t=key_t,
            value=value,
            mask=get_mask_chunk(i * query_chunk_size)
        ) for i in range(math.ceil(q_tokens / query_chunk_size))
    ], dim=1)
    return res