File size: 6,635 Bytes
9bf4bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Any, Callable, List, Optional, Sequence, Tuple, Union

import mmcv
from mmengine.dataset import BaseDataset

from mmocr.registry import DATASETS


@DATASETS.register_module()
class RecogLMDBDataset(BaseDataset):
    r"""RecogLMDBDataset for text recognition.

    The annotation format should be in lmdb format. The lmdb file should
    contain three keys: 'num-samples', 'label-xxxxxxxxx' and 'image-xxxxxxxxx',
    where 'xxxxxxxxx' is the index of the image. The value of 'num-samples' is
    the total number of images. The value of 'label-xxxxxxx' is the text label
    of the image, and the value of 'image-xxxxxxx' is the image data.

    following keys:
    Each item fetched from this dataset will be a dict containing the
    following keys:

        - img (ndarray): The loaded image.
        - img_path (str): The image key.
        - instances (list[dict]): The list of annotations for the image.

    Args:
        ann_file (str): Annotation file path. Defaults to ''.
        img_color_type (str): The flag argument for :func:``mmcv.imfrombytes``,
            which determines how the image bytes will be parsed. Defaults to
            'color'.
        metainfo (dict, optional): Meta information for dataset, such as class
            information. Defaults to None.
        data_root (str): The root directory for ``data_prefix`` and
            ``ann_file``. Defaults to ''.
        data_prefix (dict): Prefix for training data. Defaults to
            ``dict(img_path='')``.
        filter_cfg (dict, optional): Config for filter data. Defaults to None.
        indices (int or Sequence[int], optional): Support using first few
            data in annotation file to facilitate training/testing on a smaller
            dataset. Defaults to None which means using all ``data_infos``.
        serialize_data (bool, optional): Whether to hold memory using
            serialized objects, when enabled, data loader workers can use
            shared RAM from master process instead of making a copy. Defaults
            to True.
        pipeline (list, optional): Processing pipeline. Defaults to [].
        test_mode (bool, optional): ``test_mode=True`` means in test phase.
            Defaults to False.
        lazy_init (bool, optional): Whether to load annotation during
            instantiation. In some cases, such as visualization, only the meta
            information of the dataset is needed, which is not necessary to
            load annotation file. ``RecogLMDBDataset`` can skip load
            annotations to save time by set ``lazy_init=False``.
            Defaults to False.
        max_refetch (int, optional): If ``RecogLMDBdataset.prepare_data`` get a
            None img. The maximum extra number of cycles to get a valid
            image. Defaults to 1000.
    """

    def __init__(
        self,
        ann_file: str = '',
        img_color_type: str = 'color',
        metainfo: Optional[dict] = None,
        data_root: Optional[str] = '',
        data_prefix: dict = dict(img_path=''),
        filter_cfg: Optional[dict] = None,
        indices: Optional[Union[int, Sequence[int]]] = None,
        serialize_data: bool = True,
        pipeline: List[Union[dict, Callable]] = [],
        test_mode: bool = False,
        lazy_init: bool = False,
        max_refetch: int = 1000,
    ) -> None:

        super().__init__(
            ann_file=ann_file,
            metainfo=metainfo,
            data_root=data_root,
            data_prefix=data_prefix,
            filter_cfg=filter_cfg,
            indices=indices,
            serialize_data=serialize_data,
            pipeline=pipeline,
            test_mode=test_mode,
            lazy_init=lazy_init,
            max_refetch=max_refetch)

        self.color_type = img_color_type

    def load_data_list(self) -> List[dict]:
        """Load annotations from an annotation file named as ``self.ann_file``

        Returns:
            List[dict]: A list of annotation.
        """
        if not hasattr(self, 'env'):
            self._make_env()
            with self.env.begin(write=False) as txn:
                self.total_number = int(
                    txn.get(b'num-samples').decode('utf-8'))

        data_list = []
        with self.env.begin(write=False) as txn:
            for i in range(self.total_number):
                idx = i + 1
                label_key = f'label-{idx:09d}'
                img_key = f'image-{idx:09d}'
                text = txn.get(label_key.encode('utf-8')).decode('utf-8')
                line = [img_key, text]
                data_list.append(self.parse_data_info(line))
        return data_list

    def parse_data_info(self,
                        raw_anno_info: Tuple[Optional[str],
                                             str]) -> Union[dict, List[dict]]:
        """Parse raw annotation to target format.

        Args:
            raw_anno_info (str): One raw data information loaded
                from ``ann_file``.

        Returns:
            (dict): Parsed annotation.
        """
        data_info = {}
        img_key, text = raw_anno_info
        data_info['img_key'] = img_key
        data_info['instances'] = [dict(text=text)]
        return data_info

    def prepare_data(self, idx) -> Any:
        """Get data processed by ``self.pipeline``.

        Args:
            idx (int): The index of ``data_info``.

        Returns:
            Any: Depends on ``self.pipeline``.
        """
        data_info = self.get_data_info(idx)
        with self.env.begin(write=False) as txn:
            img_bytes = txn.get(data_info['img_key'].encode('utf-8'))
            if img_bytes is None:
                return None
            data_info['img'] = mmcv.imfrombytes(
                img_bytes, flag=self.color_type)
        return self.pipeline(data_info)

    def _make_env(self):
        """Create lmdb environment from self.ann_file and save it to
        ``self.env``.

        Returns:
            Lmdb environment.
        """
        try:
            import lmdb
        except ImportError:
            raise ImportError(
                'Please install lmdb to enable RecogLMDBDataset.')
        if hasattr(self, 'env'):
            return

        self.env = lmdb.open(
            self.ann_file,
            max_readers=1,
            readonly=True,
            lock=False,
            readahead=False,
            meminit=False,
        )

    def close(self):
        """Close lmdb environment."""
        if hasattr(self, 'env'):
            self.env.close()
            del self.env