File size: 12,225 Bytes
9bf4bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Sequence, Tuple, Union

import cv2
import numpy as np
import torch
from mmdet.models.utils import multi_apply
from shapely.geometry import Polygon
from torch import Tensor

from mmocr.registry import MODELS
from mmocr.structures import TextDetDataSample
from mmocr.utils import offset_polygon
from mmocr.utils.typing_utils import ArrayLike
from .seg_based_module_loss import SegBasedModuleLoss


@MODELS.register_module()
class DBModuleLoss(SegBasedModuleLoss):
    r"""The class for implementing DBNet loss.

    This is partially adapted from https://github.com/MhLiao/DB.

    Args:
        loss_prob (dict): The loss config for probability map. Defaults to
            dict(type='MaskedBalancedBCEWithLogitsLoss').
        loss_thr (dict): The loss config for threshold map. Defaults to
            dict(type='MaskedSmoothL1Loss', beta=0).
        loss_db (dict): The loss config for binary map. Defaults to
            dict(type='MaskedDiceLoss').
        weight_prob (float): The weight of probability map loss.
            Denoted as :math:`\alpha` in paper. Defaults to 5.
        weight_thr (float): The weight of threshold map loss.
            Denoted as :math:`\beta` in paper. Defaults to 10.
        shrink_ratio (float): The ratio of shrunk text region. Defaults to 0.4.
        thr_min (float): The minimum threshold map value. Defaults to 0.3.
        thr_max (float): The maximum threshold map value. Defaults to 0.7.
        min_sidelength (int or float): The minimum sidelength of the
            minimum rotated rectangle around any text region. Defaults to 8.
    """

    def __init__(self,
                 loss_prob: Dict = dict(
                     type='MaskedBalancedBCEWithLogitsLoss'),
                 loss_thr: Dict = dict(type='MaskedSmoothL1Loss', beta=0),
                 loss_db: Dict = dict(type='MaskedDiceLoss'),
                 weight_prob: float = 5.,
                 weight_thr: float = 10.,
                 shrink_ratio: float = 0.4,
                 thr_min: float = 0.3,
                 thr_max: float = 0.7,
                 min_sidelength: Union[int, float] = 8) -> None:
        super().__init__()
        self.loss_prob = MODELS.build(loss_prob)
        self.loss_thr = MODELS.build(loss_thr)
        self.loss_db = MODELS.build(loss_db)
        self.weight_prob = weight_prob
        self.weight_thr = weight_thr
        self.shrink_ratio = shrink_ratio
        self.thr_min = thr_min
        self.thr_max = thr_max
        self.min_sidelength = min_sidelength

    def forward(self, preds: Tuple[Tensor, Tensor, Tensor],
                data_samples: Sequence[TextDetDataSample]) -> Dict:
        """Compute DBNet loss.

        Args:
            preds (tuple(tensor)): Raw predictions from model, containing
                ``prob_logits``, ``thr_map`` and ``binary_map``.
                Each is a tensor of shape :math:`(N, H, W)`.
            data_samples (list[TextDetDataSample]): The data samples.

        Returns:
            results(dict): The dict for dbnet losses with loss_prob, \
                loss_db and loss_thr.
        """
        prob_logits, thr_map, binary_map = preds
        gt_shrinks, gt_shrink_masks, gt_thrs, gt_thr_masks = self.get_targets(
            data_samples)
        gt_shrinks = gt_shrinks.to(prob_logits.device)
        gt_shrink_masks = gt_shrink_masks.to(prob_logits.device)
        gt_thrs = gt_thrs.to(thr_map.device)
        gt_thr_masks = gt_thr_masks.to(thr_map.device)
        loss_prob = self.loss_prob(prob_logits, gt_shrinks, gt_shrink_masks)

        loss_thr = self.loss_thr(thr_map, gt_thrs, gt_thr_masks)
        loss_db = self.loss_db(binary_map, gt_shrinks, gt_shrink_masks)

        results = dict(
            loss_prob=self.weight_prob * loss_prob,
            loss_thr=self.weight_thr * loss_thr,
            loss_db=loss_db)

        return results

    def _is_poly_invalid(self, poly: np.ndarray) -> bool:
        """Check if the input polygon is invalid or not. It is invalid if its
        area is smaller than 1 or the shorter side of its minimum bounding box
        is smaller than min_sidelength.

        Args:
            poly (ndarray): The polygon.

        Returns:
            bool: Whether the polygon is invalid.
        """
        poly = poly.reshape(-1, 2)
        area = Polygon(poly).area
        if abs(area) < 1:
            return True
        rect_size = cv2.minAreaRect(poly)[1]
        len_shortest_side = min(rect_size)
        if len_shortest_side < self.min_sidelength:
            return True

        return False

    def _generate_thr_map(self, img_size: Tuple[int, int],
                          polygons: ArrayLike) -> np.ndarray:
        """Generate threshold map.

        Args:
            img_size (tuple(int)): The image size (h, w)
            polygons (Sequence[ndarray]): 2-d array, representing all the
                polygons of the text region.

        Returns:
            tuple:

            - thr_map (ndarray): The generated threshold map.
            - thr_mask (ndarray): The effective mask of threshold map.
        """
        thr_map = np.zeros(img_size, dtype=np.float32)
        thr_mask = np.zeros(img_size, dtype=np.uint8)

        for polygon in polygons:
            self._draw_border_map(polygon, thr_map, mask=thr_mask)
        thr_map = thr_map * (self.thr_max - self.thr_min) + self.thr_min

        return thr_map, thr_mask

    def _draw_border_map(self, polygon: np.ndarray, canvas: np.ndarray,
                         mask: np.ndarray) -> None:
        """Generate threshold map for one polygon.

        Args:
            polygon (np.ndarray): The polygon.
            canvas (np.ndarray): The generated threshold map.
            mask (np.ndarray): The generated threshold mask.
        """

        polygon = polygon.reshape(-1, 2)
        polygon_obj = Polygon(polygon)
        distance = (
            polygon_obj.area * (1 - np.power(self.shrink_ratio, 2)) /
            polygon_obj.length)
        expanded_polygon = offset_polygon(polygon, distance)
        if len(expanded_polygon) == 0:
            print(f'Padding {polygon} with {distance} gets {expanded_polygon}')
            expanded_polygon = polygon.copy().astype(np.int32)
        else:
            expanded_polygon = expanded_polygon.reshape(-1, 2).astype(np.int32)

        x_min = expanded_polygon[:, 0].min()
        x_max = expanded_polygon[:, 0].max()
        y_min = expanded_polygon[:, 1].min()
        y_max = expanded_polygon[:, 1].max()

        width = x_max - x_min + 1
        height = y_max - y_min + 1

        polygon[:, 0] = polygon[:, 0] - x_min
        polygon[:, 1] = polygon[:, 1] - y_min

        xs = np.broadcast_to(
            np.linspace(0, width - 1, num=width).reshape(1, width),
            (height, width))
        ys = np.broadcast_to(
            np.linspace(0, height - 1, num=height).reshape(height, 1),
            (height, width))

        distance_map = np.zeros((polygon.shape[0], height, width),
                                dtype=np.float32)
        for i in range(polygon.shape[0]):
            j = (i + 1) % polygon.shape[0]
            absolute_distance = self._dist_points2line(xs, ys, polygon[i],
                                                       polygon[j])
            distance_map[i] = np.clip(absolute_distance / distance, 0, 1)
        distance_map = distance_map.min(axis=0)

        x_min_valid = min(max(0, x_min), canvas.shape[1] - 1)
        x_max_valid = min(max(0, x_max), canvas.shape[1] - 1)
        y_min_valid = min(max(0, y_min), canvas.shape[0] - 1)
        y_max_valid = min(max(0, y_max), canvas.shape[0] - 1)

        if x_min_valid - x_min >= width or y_min_valid - y_min >= height:
            return

        cv2.fillPoly(mask, [expanded_polygon.astype(np.int32)], 1.0)
        canvas[y_min_valid:y_max_valid + 1,
               x_min_valid:x_max_valid + 1] = np.fmax(
                   1 - distance_map[y_min_valid - y_min:y_max_valid - y_max +
                                    height, x_min_valid - x_min:x_max_valid -
                                    x_max + width],
                   canvas[y_min_valid:y_max_valid + 1,
                          x_min_valid:x_max_valid + 1])

    def get_targets(self, data_samples: List[TextDetDataSample]) -> Tuple:
        """Generate loss targets from data samples.

        Args:
            data_samples (list(TextDetDataSample)): Ground truth data samples.

        Returns:
            tuple: A tuple of four tensors as DBNet targets.
        """

        gt_shrinks, gt_shrink_masks, gt_thrs, gt_thr_masks = multi_apply(
            self._get_target_single, data_samples)
        gt_shrinks = torch.cat(gt_shrinks)
        gt_shrink_masks = torch.cat(gt_shrink_masks)
        gt_thrs = torch.cat(gt_thrs)
        gt_thr_masks = torch.cat(gt_thr_masks)
        return gt_shrinks, gt_shrink_masks, gt_thrs, gt_thr_masks

    def _get_target_single(self, data_sample: TextDetDataSample) -> Tuple:
        """Generate loss target from a data sample.

        Args:
            data_sample (TextDetDataSample): The data sample.

        Returns:
            tuple: A tuple of four tensors as the targets of one prediction.
        """

        gt_instances = data_sample.gt_instances
        ignore_flags = gt_instances.ignored
        for idx, polygon in enumerate(gt_instances.polygons):
            if self._is_poly_invalid(polygon):
                ignore_flags[idx] = True
        gt_shrink, ignore_flags = self._generate_kernels(
            data_sample.img_shape,
            gt_instances.polygons,
            self.shrink_ratio,
            ignore_flags=ignore_flags)

        # Get boolean mask where Trues indicate text instance pixels
        gt_shrink = gt_shrink > 0

        gt_shrink_mask = self._generate_effective_mask(
            data_sample.img_shape, gt_instances[ignore_flags].polygons)
        gt_thr, gt_thr_mask = self._generate_thr_map(
            data_sample.img_shape, gt_instances[~ignore_flags].polygons)

        # to_tensor
        gt_shrink = torch.from_numpy(gt_shrink).unsqueeze(0).float()
        gt_shrink_mask = torch.from_numpy(gt_shrink_mask).unsqueeze(0).float()
        gt_thr = torch.from_numpy(gt_thr).unsqueeze(0).float()
        gt_thr_mask = torch.from_numpy(gt_thr_mask).unsqueeze(0).float()
        return gt_shrink, gt_shrink_mask, gt_thr, gt_thr_mask

    @staticmethod
    def _dist_points2line(xs: np.ndarray, ys: np.ndarray, pt1: np.ndarray,
                          pt2: np.ndarray) -> np.ndarray:
        """Compute distances from points to a line. This is adapted from
        https://github.com/MhLiao/DB.

        Args:
            xs (ndarray): The x coordinates of points of size :math:`(N, )`.
            ys (ndarray): The y coordinates of size :math:`(N, )`.
            pt1 (ndarray): The first point on the line of size :math:`(2, )`.
            pt2 (ndarray): The second point on the line of size :math:`(2, )`.

        Returns:
            ndarray: The distance matrix of size :math:`(N, )`.
        """
        # suppose a triangle with three edge abc with c=point_1 point_2
        # a^2
        a_square = np.square(xs - pt1[0]) + np.square(ys - pt1[1])
        # b^2
        b_square = np.square(xs - pt2[0]) + np.square(ys - pt2[1])
        # c^2
        c_square = np.square(pt1[0] - pt2[0]) + np.square(pt1[1] - pt2[1])
        # -cosC=(c^2-a^2-b^2)/2(ab)
        neg_cos_c = (
            (c_square - a_square - b_square) /
            (np.finfo(np.float32).eps + 2 * np.sqrt(a_square * b_square)))
        # clip -cosC value to [-1, 1]
        neg_cos_c = np.clip(neg_cos_c, -1.0, 1.0)
        # sinC^2=1-cosC^2
        square_sin = 1 - np.square(neg_cos_c)
        square_sin = np.nan_to_num(square_sin)
        # distance=a*b*sinC/c=a*h/c=2*area/c
        result = np.sqrt(a_square * b_square * square_sin /
                         (np.finfo(np.float32).eps + c_square))
        # set result to minimum edge if C<pi/2
        result[neg_cos_c < 0] = np.sqrt(np.fmin(a_square,
                                                b_square))[neg_cos_c < 0]
        return result