File size: 6,601 Bytes
9bf4bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
from mmengine.model import BaseModule

from mmocr.models.common.modules import (MultiHeadAttention,
                                         PositionwiseFeedForward)


class TFEncoderLayer(BaseModule):
    """Transformer Encoder Layer.

    Args:
        d_model (int): The number of expected features
            in the decoder inputs (default=512).
        d_inner (int): The dimension of the feedforward
            network model (default=256).
        n_head (int): The number of heads in the
            multiheadattention models (default=8).
        d_k (int): Total number of features in key.
        d_v (int): Total number of features in value.
        dropout (float): Dropout layer on attn_output_weights.
        qkv_bias (bool): Add bias in projection layer. Default: False.
        act_cfg (dict): Activation cfg for feedforward module.
        operation_order (tuple[str]): The execution order of operation
            in transformer. Such as ('self_attn', 'norm', 'ffn', 'norm')
            or ('norm', 'self_attn', 'norm', 'ffn').
            Default:None.
    """

    def __init__(self,
                 d_model=512,
                 d_inner=256,
                 n_head=8,
                 d_k=64,
                 d_v=64,
                 dropout=0.1,
                 qkv_bias=False,
                 act_cfg=dict(type='mmengine.GELU'),
                 operation_order=None):
        super().__init__()
        self.attn = MultiHeadAttention(
            n_head, d_model, d_k, d_v, qkv_bias=qkv_bias, dropout=dropout)
        self.norm1 = nn.LayerNorm(d_model)
        self.mlp = PositionwiseFeedForward(
            d_model, d_inner, dropout=dropout, act_cfg=act_cfg)
        self.norm2 = nn.LayerNorm(d_model)

        self.operation_order = operation_order
        if self.operation_order is None:
            self.operation_order = ('norm', 'self_attn', 'norm', 'ffn')

        assert self.operation_order in [('norm', 'self_attn', 'norm', 'ffn'),
                                        ('self_attn', 'norm', 'ffn', 'norm')]

    def forward(self, x, mask=None):
        if self.operation_order == ('self_attn', 'norm', 'ffn', 'norm'):
            residual = x
            x = residual + self.attn(x, x, x, mask)
            x = self.norm1(x)

            residual = x
            x = residual + self.mlp(x)
            x = self.norm2(x)
        elif self.operation_order == ('norm', 'self_attn', 'norm', 'ffn'):
            residual = x
            x = self.norm1(x)
            x = residual + self.attn(x, x, x, mask)

            residual = x
            x = self.norm2(x)
            x = residual + self.mlp(x)

        return x


class TFDecoderLayer(nn.Module):
    """Transformer Decoder Layer.

    Args:
        d_model (int): The number of expected features
            in the decoder inputs (default=512).
        d_inner (int): The dimension of the feedforward
            network model (default=256).
        n_head (int): The number of heads in the
            multiheadattention models (default=8).
        d_k (int): Total number of features in key.
        d_v (int): Total number of features in value.
        dropout (float): Dropout layer on attn_output_weights.
        qkv_bias (bool): Add bias in projection layer. Default: False.
        act_cfg (dict): Activation cfg for feedforward module.
        operation_order (tuple[str]): The execution order of operation
            in transformer. Such as ('self_attn', 'norm', 'enc_dec_attn',
            'norm', 'ffn', 'norm') or ('norm', 'self_attn', 'norm',
            'enc_dec_attn', 'norm', 'ffn').
            Default:None.
    """

    def __init__(self,
                 d_model=512,
                 d_inner=256,
                 n_head=8,
                 d_k=64,
                 d_v=64,
                 dropout=0.1,
                 qkv_bias=False,
                 act_cfg=dict(type='mmengine.GELU'),
                 operation_order=None):
        super().__init__()

        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.norm3 = nn.LayerNorm(d_model)

        self.self_attn = MultiHeadAttention(
            n_head, d_model, d_k, d_v, dropout=dropout, qkv_bias=qkv_bias)

        self.enc_attn = MultiHeadAttention(
            n_head, d_model, d_k, d_v, dropout=dropout, qkv_bias=qkv_bias)

        self.mlp = PositionwiseFeedForward(
            d_model, d_inner, dropout=dropout, act_cfg=act_cfg)

        self.operation_order = operation_order
        if self.operation_order is None:
            self.operation_order = ('norm', 'self_attn', 'norm',
                                    'enc_dec_attn', 'norm', 'ffn')
        assert self.operation_order in [
            ('norm', 'self_attn', 'norm', 'enc_dec_attn', 'norm', 'ffn'),
            ('self_attn', 'norm', 'enc_dec_attn', 'norm', 'ffn', 'norm')
        ]

    def forward(self,
                dec_input,
                enc_output,
                self_attn_mask=None,
                dec_enc_attn_mask=None):
        if self.operation_order == ('self_attn', 'norm', 'enc_dec_attn',
                                    'norm', 'ffn', 'norm'):
            dec_attn_out = self.self_attn(dec_input, dec_input, dec_input,
                                          self_attn_mask)
            dec_attn_out += dec_input
            dec_attn_out = self.norm1(dec_attn_out)

            enc_dec_attn_out = self.enc_attn(dec_attn_out, enc_output,
                                             enc_output, dec_enc_attn_mask)
            enc_dec_attn_out += dec_attn_out
            enc_dec_attn_out = self.norm2(enc_dec_attn_out)

            mlp_out = self.mlp(enc_dec_attn_out)
            mlp_out += enc_dec_attn_out
            mlp_out = self.norm3(mlp_out)
        elif self.operation_order == ('norm', 'self_attn', 'norm',
                                      'enc_dec_attn', 'norm', 'ffn'):
            dec_input_norm = self.norm1(dec_input)
            dec_attn_out = self.self_attn(dec_input_norm, dec_input_norm,
                                          dec_input_norm, self_attn_mask)
            dec_attn_out += dec_input

            enc_dec_attn_in = self.norm2(dec_attn_out)
            enc_dec_attn_out = self.enc_attn(enc_dec_attn_in, enc_output,
                                             enc_output, dec_enc_attn_mask)
            enc_dec_attn_out += dec_attn_out

            mlp_out = self.mlp(self.norm3(enc_dec_attn_out))
            mlp_out += enc_dec_attn_out

        return mlp_out