File size: 1,681 Bytes
9bf4bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
_base_ = [
    '../_base_/datasets/mjsynth.py',
    '../_base_/datasets/synthtext.py',
    '../_base_/datasets/cute80.py',
    '../_base_/datasets/iiit5k.py',
    '../_base_/datasets/svt.py',
    '../_base_/datasets/svtp.py',
    '../_base_/datasets/icdar2013.py',
    '../_base_/datasets/icdar2015.py',
    '../_base_/default_runtime.py',
    '../_base_/schedules/schedule_adam_step_5e.py',
    '_base_satrn_shallow.py',
]

train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=20, val_interval=1)

# dataset settings
train_list = [_base_.mjsynth_textrecog_train, _base_.synthtext_textrecog_train]
test_list = [
    _base_.cute80_textrecog_test, _base_.iiit5k_textrecog_test,
    _base_.svt_textrecog_test, _base_.svtp_textrecog_test,
    _base_.icdar2013_textrecog_test, _base_.icdar2015_textrecog_test
]

train_dataset = dict(
    type='ConcatDataset', datasets=train_list, pipeline=_base_.train_pipeline)
test_dataset = dict(
    type='ConcatDataset', datasets=test_list, pipeline=_base_.test_pipeline)

# optimizer
optim_wrapper = dict(type='OptimWrapper', optimizer=dict(type='Adam', lr=3e-4))

train_dataloader = dict(
    batch_size=128,
    num_workers=24,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    dataset=train_dataset)

test_dataloader = dict(
    batch_size=1,
    num_workers=4,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=test_dataset)

val_dataloader = test_dataloader

val_evaluator = dict(
    dataset_prefixes=['CUTE80', 'IIIT5K', 'SVT', 'SVTP', 'IC13', 'IC15'])
test_evaluator = val_evaluator

auto_scale_lr = dict(base_batch_size=64 * 8)