File size: 6,516 Bytes
9bf4bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from typing import Dict, Sequence

import mmengine

from mmocr.utils import is_type_list


def dump_ocr_data(image_infos: Sequence[Dict], out_json_name: str,
                  task_name: str, **kwargs) -> Dict:
    """Dump the annotation in openmmlab style.

    Args:
        image_infos (list): List of image information dicts. Read the example
            section for the format illustration.
        out_json_name (str): Output json filename.
        task_name (str): Task name. Options are 'textdet', 'textrecog' and
            'textspotter'.

    Examples:
        Here is the general structure of image_infos for textdet/textspotter
        tasks:

        .. code-block:: python

            [  # A list of dicts. Each dict stands for a single image.
                {
                    "file_name": "1.jpg",
                    "height": 100,
                    "width": 200,
                    "segm_file": "seg.txt" # (optional) path to segmap
                    "anno_info": [  # a list of dicts. Each dict
                                    # stands for a single text instance.
                        {
                            "iscrowd": 0,  # 0: don't ignore this instance
                                           # 1: ignore
                            "category_id": 0,  # Instance class id. Must be 0
                                               # for OCR tasks to permanently
                                               # be mapped to 'text' category
                            "bbox": [x, y, w, h],
                            "segmentation": [x1, y1, x2, y2, ...],
                            "text": "demo_text"  # for textspotter only.
                        }
                    ]
                },
            ]

        The input for textrecog task is much simpler:

        .. code-block:: python

            [   # A list of dicts. Each dict stands for a single image.
                {
                    "file_name": "1.jpg",
                    "anno_info": [  # a list of dicts. Each dict
                                    # stands for a single text instance.
                                    # However, in textrecog, usually each
                                    # image only has one text instance.
                        {
                            "text": "demo_text"
                        }
                    ]
                },
            ]


    Returns:
        out_json(dict): The openmmlab-style annotation.
    """

    task2dataset = {
        'textspotter': 'TextSpotterDataset',
        'textdet': 'TextDetDataset',
        'textrecog': 'TextRecogDataset'
    }

    assert isinstance(image_infos, list)
    assert isinstance(out_json_name, str)
    assert task_name in task2dataset.keys()

    dataset_type = task2dataset[task_name]

    out_json = dict(
        metainfo=dict(dataset_type=dataset_type, task_name=task_name),
        data_list=list())
    if task_name in ['textdet', 'textspotter']:
        out_json['metainfo']['category'] = [dict(id=0, name='text')]

    for image_info in image_infos:

        single_info = dict(instances=list())
        single_info['img_path'] = image_info['file_name']
        if task_name in ['textdet', 'textspotter']:
            single_info['height'] = image_info['height']
            single_info['width'] = image_info['width']
            if 'segm_file' in image_info:
                single_info['seg_map'] = image_info['segm_file']

        anno_infos = image_info['anno_info']

        for anno_info in anno_infos:
            instance = {}
            if task_name in ['textrecog', 'textspotter']:
                instance['text'] = anno_info['text']
            if task_name in ['textdet', 'textspotter']:
                mask = anno_info['segmentation']
                # TODO: remove this if-branch when all converters have been
                # verified
                if len(mask) == 1 and len(mask[0]) > 1:
                    mask = mask[0]
                    warnings.warn(
                        'Detected nested segmentation for a single'
                        'text instance, which should be a 1-d array now.'
                        'Please fix input accordingly.')
                instance['polygon'] = mask
                x, y, w, h = anno_info['bbox']
                instance['bbox'] = [x, y, x + w, y + h]
                instance['bbox_label'] = anno_info['category_id']
                instance['ignore'] = anno_info['iscrowd'] == 1
            single_info['instances'].append(instance)

        out_json['data_list'].append(single_info)

    mmengine.dump(out_json, out_json_name, **kwargs)

    return out_json


def recog_anno_to_imginfo(
    file_paths: Sequence[str],
    labels: Sequence[str],
) -> Sequence[Dict]:
    """Convert a list of file_paths and labels for recognition tasks into the
    format of image_infos acceptable by :func:`dump_ocr_data()`. It's meant to
    maintain compatibility with the legacy annotation format in MMOCR 0.x.

    In MMOCR 0.x, data converters for recognition usually converts the
    annotations into a list of file paths and a list of labels, which look
    like the following:

    .. code-block:: python

        file_paths = ['1.jpg', '2.jpg', ...]
        labels = ['aaa', 'bbb', ...]

    This utility merges them into a list of dictionaries parsable by
    :func:`dump_ocr_data()`:

    .. code-block:: python

        [   # A list of dicts. Each dict stands for a single image.
            {
                "file_name": "1.jpg",
                "anno_info": [
                    {
                        "text": "aaa"
                    }
                ]
            },
            {
                "file_name": "2.jpg",
                "anno_info": [
                    {
                        "text": "bbb"
                    }
                ]
            },
            ...
        ]

    Args:
        file_paths (list[str]): A list of file paths to images.
        labels (list[str]): A list of text labels.

    Returns:
        list[dict]: Annotations parsable by :func:`dump_ocr_data()`.
    """
    assert is_type_list(file_paths, str)
    assert is_type_list(labels, str)
    assert len(file_paths) == len(labels)

    results = []
    for i in range(len(file_paths)):
        result = dict(
            file_name=file_paths[i], anno_info=[dict(text=labels[i])])
        results.append(result)

    return results