File size: 5,741 Bytes
9bf4bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
from typing import Callable, List, Optional, Sequence, Union

from mmengine.dataset import BaseDataset
from mmengine.fileio import list_from_file

from mmocr.registry import DATASETS, TASK_UTILS


@DATASETS.register_module()
class RecogTextDataset(BaseDataset):
    r"""RecogTextDataset for text recognition.

    The annotation format can be both in jsonl and txt. If the annotation file
    is in jsonl format, it should be a list of dicts. If the annotation file
    is in txt format, it should be a list of lines.

    The annotation formats are shown as follows.
    - txt format
    .. code-block:: none

        ``test_img1.jpg OpenMMLab``
        ``test_img2.jpg MMOCR``

    - jsonl format
    .. code-block:: none

        ``{"filename": "test_img1.jpg", "text": "OpenMMLab"}``
        ``{"filename": "test_img2.jpg", "text": "MMOCR"}``

    Args:
        ann_file (str): Annotation file path. Defaults to ''.
        backend_args (dict, optional): Arguments to instantiate the
            prefix of uri corresponding backend. Defaults to None.
        parse_cfg (dict, optional): Config of parser for parsing annotations.
            Use ``LineJsonParser`` when the annotation file is in jsonl format
            with keys of ``filename`` and ``text``. The keys in parse_cfg
            should be consistent with the keys in jsonl annotations. The first
            key in parse_cfg should be the key of the path in jsonl
            annotations. The second key in parse_cfg should be the key of the
            text in jsonl Use ``LineStrParser`` when the annotation file is in
            txt format. Defaults to
            ``dict(type='LineJsonParser', keys=['filename', 'text'])``.
        metainfo (dict, optional): Meta information for dataset, such as class
            information. Defaults to None.
        data_root (str): The root directory for ``data_prefix`` and
            ``ann_file``. Defaults to ''.
        data_prefix (dict): Prefix for training data. Defaults to
            ``dict(img_path='')``.
        filter_cfg (dict, optional): Config for filter data. Defaults to None.
        indices (int or Sequence[int], optional): Support using first few
            data in annotation file to facilitate training/testing on a smaller
            dataset. Defaults to None which means using all ``data_infos``.
        serialize_data (bool, optional): Whether to hold memory using
            serialized objects, when enabled, data loader workers can use
            shared RAM from master process instead of making a copy. Defaults
            to True.
        pipeline (list, optional): Processing pipeline. Defaults to [].
        test_mode (bool, optional): ``test_mode=True`` means in test phase.
            Defaults to False.
        lazy_init (bool, optional): Whether to load annotation during
            instantiation. In some cases, such as visualization, only the meta
            information of the dataset is needed, which is not necessary to
            load annotation file. ``RecogTextDataset`` can skip load
            annotations to save time by set ``lazy_init=False``. Defaults to
            False.
        max_refetch (int, optional): If ``RecogTextDataset.prepare_data`` get a
            None img. The maximum extra number of cycles to get a valid
            image. Defaults to 1000.
    """

    def __init__(self,
                 ann_file: str = '',
                 backend_args=None,
                 parser_cfg: Optional[dict] = dict(
                     type='LineJsonParser', keys=['filename', 'text']),
                 metainfo: Optional[dict] = None,
                 data_root: Optional[str] = '',
                 data_prefix: dict = dict(img_path=''),
                 filter_cfg: Optional[dict] = None,
                 indices: Optional[Union[int, Sequence[int]]] = None,
                 serialize_data: bool = True,
                 pipeline: List[Union[dict, Callable]] = [],
                 test_mode: bool = False,
                 lazy_init: bool = False,
                 max_refetch: int = 1000) -> None:

        self.parser = TASK_UTILS.build(parser_cfg)
        self.backend_args = backend_args
        super().__init__(
            ann_file=ann_file,
            metainfo=metainfo,
            data_root=data_root,
            data_prefix=data_prefix,
            filter_cfg=filter_cfg,
            indices=indices,
            serialize_data=serialize_data,
            pipeline=pipeline,
            test_mode=test_mode,
            lazy_init=lazy_init,
            max_refetch=max_refetch)

    def load_data_list(self) -> List[dict]:
        """Load annotations from an annotation file named as ``self.ann_file``

        Returns:
            List[dict]: A list of annotation.
        """
        data_list = []
        raw_anno_infos = list_from_file(
            self.ann_file, backend_args=self.backend_args)
        for raw_anno_info in raw_anno_infos:
            data_list.append(self.parse_data_info(raw_anno_info))
        return data_list

    def parse_data_info(self, raw_anno_info: str) -> dict:
        """Parse raw annotation to target format.

        Args:
            raw_anno_info (str): One raw data information loaded
                from ``ann_file``.

        Returns:
            (dict): Parsed annotation.
        """
        data_info = {}
        parsed_anno = self.parser(raw_anno_info)
        img_path = osp.join(self.data_prefix['img_path'],
                            parsed_anno[self.parser.keys[0]])

        data_info['img_path'] = img_path
        data_info['instances'] = [dict(text=parsed_anno[self.parser.keys[1]])]
        return data_info