File size: 5,094 Bytes
9bf4bd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright (c) OpenMMLab. All rights reserved.

from typing import Dict

import torch

from mmocr.registry import MODELS
from mmocr.utils.typing_utils import (ConfigType, InitConfigType,
                                      OptConfigType, OptRecSampleList,
                                      RecForwardResults, RecSampleList)
from .base import BaseRecognizer


@MODELS.register_module()
class EncoderDecoderRecognizer(BaseRecognizer):
    """Base class for encode-decode recognizer.

    Args:
        preprocessor (dict, optional): Config dict for preprocessor. Defaults
            to None.
        backbone (dict, optional): Backbone config. Defaults to None.
        encoder (dict, optional): Encoder config. If None, the output from
            backbone will be directly fed into ``decoder``. Defaults to None.
        decoder (dict, optional): Decoder config. Defaults to None.
        data_preprocessor (dict, optional): Model preprocessing config
            for processing the input image data. Keys allowed are
            ``to_rgb``(bool), ``pad_size_divisor``(int), ``pad_value``(int or
            float), ``mean``(int or float) and ``std``(int or float).
            Preprcessing order: 1. to rgb; 2. normalization 3. pad.
            Defaults to None.
        init_cfg (dict or list[dict], optional): Initialization configs.
            Defaults to None.
    """

    def __init__(self,
                 preprocessor: OptConfigType = None,
                 backbone: OptConfigType = None,
                 encoder: OptConfigType = None,
                 decoder: OptConfigType = None,
                 data_preprocessor: ConfigType = None,
                 init_cfg: InitConfigType = None) -> None:

        super().__init__(
            init_cfg=init_cfg, data_preprocessor=data_preprocessor)

        # Preprocessor module, e.g., TPS
        if preprocessor is not None:
            self.preprocessor = MODELS.build(preprocessor)

        # Backbone
        if backbone is not None:
            self.backbone = MODELS.build(backbone)

        # Encoder module
        if encoder is not None:
            self.encoder = MODELS.build(encoder)

        # Decoder module
        assert decoder is not None
        self.decoder = MODELS.build(decoder)

    def extract_feat(self, inputs: torch.Tensor) -> torch.Tensor:
        """Directly extract features from the backbone."""
        if self.with_preprocessor:
            inputs = self.preprocessor(inputs)
        if self.with_backbone:
            inputs = self.backbone(inputs)
        return inputs

    def loss(self, inputs: torch.Tensor, data_samples: RecSampleList,
             **kwargs) -> Dict:
        """Calculate losses from a batch of inputs and data samples.
        Args:
            inputs (tensor): Input images of shape (N, C, H, W).
                Typically these should be mean centered and std scaled.
            data_samples (list[TextRecogDataSample]): A list of N
                datasamples, containing meta information and gold
                annotations for each of the images.

        Returns:
            dict[str, tensor]: A dictionary of loss components.
        """
        feat = self.extract_feat(inputs)
        out_enc = None
        if self.with_encoder:
            out_enc = self.encoder(feat, data_samples)
        return self.decoder.loss(feat, out_enc, data_samples)

    def predict(self, inputs: torch.Tensor, data_samples: RecSampleList,
                **kwargs) -> RecSampleList:
        """Predict results from a batch of inputs and data samples with post-
        processing.

        Args:
            inputs (torch.Tensor): Image input tensor.
            data_samples (list[TextRecogDataSample]): A list of N datasamples,
                containing meta information and gold annotations for each of
                the images.

        Returns:
            list[TextRecogDataSample]:  A list of N datasamples of prediction
            results. Results are stored in ``pred_text``.
        """
        feat = self.extract_feat(inputs)
        out_enc = None
        if self.with_encoder:
            out_enc = self.encoder(feat, data_samples)
        return self.decoder.predict(feat, out_enc, data_samples)

    def _forward(self,
                 inputs: torch.Tensor,
                 data_samples: OptRecSampleList = None,
                 **kwargs) -> RecForwardResults:
        """Network forward process. Usually includes backbone, encoder and
        decoder forward without any post-processing.

         Args:
            inputs (Tensor): Inputs with shape (N, C, H, W).
            data_samples (list[TextRecogDataSample]): A list of N
                datasamples, containing meta information and gold
                annotations for each of the images.

        Returns:
            Tensor: A tuple of features from ``decoder`` forward.
        """
        feat = self.extract_feat(inputs)
        out_enc = None
        if self.with_encoder:
            out_enc = self.encoder(feat, data_samples)
        return self.decoder(feat, out_enc, data_samples)