Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,118 Bytes
3adee15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
from einops import rearrange, repeat
import random
def gaussian_kernel(kernel_size=3, sigma=1.0, channels=3):
x_coord = torch.arange(kernel_size)
gaussian_1d = torch.exp(-(x_coord - (kernel_size - 1) / 2) ** 2 / (2 * sigma ** 2))
gaussian_1d = gaussian_1d / gaussian_1d.sum()
gaussian_2d = gaussian_1d[:, None] * gaussian_1d[None, :]
kernel = gaussian_2d[None, None, :, :].repeat(channels, 1, 1, 1)
return kernel
def gaussian_filter(latents, kernel_size=3, sigma=1.0):
channels = latents.shape[1]
kernel = gaussian_kernel(kernel_size, sigma, channels).to(latents.device, latents.dtype)
blurred_latents = F.conv2d(latents, kernel, padding=kernel_size//2, groups=channels)
return blurred_latents
def get_views(height, width, h_window_size=128, w_window_size=128, scale_factor=8):
height = int(height)
width = int(width)
h_window_stride = h_window_size // 2
w_window_stride = w_window_size // 2
h_window_size = int(h_window_size / scale_factor)
w_window_size = int(w_window_size / scale_factor)
h_window_stride = int(h_window_stride / scale_factor)
w_window_stride = int(w_window_stride / scale_factor)
num_blocks_height = int((height - h_window_size) / h_window_stride - 1e-6) + 2 if height > h_window_size else 1
num_blocks_width = int((width - w_window_size) / w_window_stride - 1e-6) + 2 if width > w_window_size else 1
total_num_blocks = int(num_blocks_height * num_blocks_width)
views = []
for i in range(total_num_blocks):
h_start = int((i // num_blocks_width) * h_window_stride)
h_end = h_start + h_window_size
w_start = int((i % num_blocks_width) * w_window_stride)
w_end = w_start + w_window_size
if h_end > height:
h_start = int(h_start + height - h_end)
h_end = int(height)
if w_end > width:
w_start = int(w_start + width - w_end)
w_end = int(width)
if h_start < 0:
h_end = int(h_end - h_start)
h_start = 0
if w_start < 0:
w_end = int(w_end - w_start)
w_start = 0
random_jitter = True
if random_jitter:
h_jitter_range = h_window_size // 8
w_jitter_range = w_window_size // 8
h_jitter = 0
w_jitter = 0
if (w_start != 0) and (w_end != width):
w_jitter = random.randint(-w_jitter_range, w_jitter_range)
elif (w_start == 0) and (w_end != width):
w_jitter = random.randint(-w_jitter_range, 0)
elif (w_start != 0) and (w_end == width):
w_jitter = random.randint(0, w_jitter_range)
if (h_start != 0) and (h_end != height):
h_jitter = random.randint(-h_jitter_range, h_jitter_range)
elif (h_start == 0) and (h_end != height):
h_jitter = random.randint(-h_jitter_range, 0)
elif (h_start != 0) and (h_end == height):
h_jitter = random.randint(0, h_jitter_range)
h_start += (h_jitter + h_jitter_range)
h_end += (h_jitter + h_jitter_range)
w_start += (w_jitter + w_jitter_range)
w_end += (w_jitter + w_jitter_range)
views.append((h_start, h_end, w_start, w_end))
return views
def scale_forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
timestep: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
class_labels: Optional[torch.LongTensor] = None,
):
# Notice that normalization is always applied before the real computation in the following blocks.
if self.current_hw:
current_scale_num_h, current_scale_num_w = self.current_hw[0] // 1024, self.current_hw[1] // 1024
else:
current_scale_num_h, current_scale_num_w = 1, 1
# 0. Self-Attention
if self.use_ada_layer_norm:
norm_hidden_states = self.norm1(hidden_states, timestep)
elif self.use_ada_layer_norm_zero:
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
)
else:
norm_hidden_states = self.norm1(hidden_states)
# 2. Prepare GLIGEN inputs
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
ratio_hw = current_scale_num_h / current_scale_num_w
latent_h = int((norm_hidden_states.shape[1] * ratio_hw) ** 0.5)
latent_w = int(latent_h / ratio_hw)
scale_factor = 128 * current_scale_num_h / latent_h
if ratio_hw > 1:
sub_h = 128
sub_w = int(128 / ratio_hw)
else:
sub_h = int(128 * ratio_hw)
sub_w = 128
h_jitter_range = int(sub_h / scale_factor // 8)
w_jitter_range = int(sub_w / scale_factor // 8)
views = get_views(latent_h, latent_w, sub_h, sub_w, scale_factor = scale_factor)
current_scale_num = max(current_scale_num_h, current_scale_num_w)
global_views = [[h, w] for h in range(current_scale_num_h) for w in range(current_scale_num_w)]
if self.fast_mode:
four_window = False
fourg_window = True
else:
four_window = True
fourg_window = False
if four_window:
norm_hidden_states_ = rearrange(norm_hidden_states, 'bh (h w) d -> bh h w d', h = latent_h)
norm_hidden_states_ = F.pad(norm_hidden_states_, (0, 0, w_jitter_range, w_jitter_range, h_jitter_range, h_jitter_range), 'constant', 0)
value = torch.zeros_like(norm_hidden_states_)
count = torch.zeros_like(norm_hidden_states_)
for index, view in enumerate(views):
h_start, h_end, w_start, w_end = view
local_states = norm_hidden_states_[:, h_start:h_end, w_start:w_end, :]
local_states = rearrange(local_states, 'bh h w d -> bh (h w) d')
local_output = self.attn1(
local_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
local_output = rearrange(local_output, 'bh (h w) d -> bh h w d', h = int(sub_h / scale_factor))
value[:, h_start:h_end, w_start:w_end, :] += local_output * 1
count[:, h_start:h_end, w_start:w_end, :] += 1
value = value[:, h_jitter_range:-h_jitter_range, w_jitter_range:-w_jitter_range, :]
count = count[:, h_jitter_range:-h_jitter_range, w_jitter_range:-w_jitter_range, :]
attn_output = torch.where(count>0, value/count, value)
gaussian_local = gaussian_filter(attn_output, kernel_size=(2*current_scale_num-1), sigma=1.0)
attn_output_global = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
attn_output_global = rearrange(attn_output_global, 'bh (h w) d -> bh h w d', h = latent_h)
gaussian_global = gaussian_filter(attn_output_global, kernel_size=(2*current_scale_num-1), sigma=1.0)
attn_output = gaussian_local + (attn_output_global - gaussian_global)
attn_output = rearrange(attn_output, 'bh h w d -> bh (h w) d')
elif fourg_window:
norm_hidden_states = rearrange(norm_hidden_states, 'bh (h w) d -> bh h w d', h = latent_h)
norm_hidden_states_ = F.pad(norm_hidden_states, (0, 0, w_jitter_range, w_jitter_range, h_jitter_range, h_jitter_range), 'constant', 0)
value = torch.zeros_like(norm_hidden_states_)
count = torch.zeros_like(norm_hidden_states_)
for index, view in enumerate(views):
h_start, h_end, w_start, w_end = view
local_states = norm_hidden_states_[:, h_start:h_end, w_start:w_end, :]
local_states = rearrange(local_states, 'bh h w d -> bh (h w) d')
local_output = self.attn1(
local_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
local_output = rearrange(local_output, 'bh (h w) d -> bh h w d', h = int(sub_h / scale_factor))
value[:, h_start:h_end, w_start:w_end, :] += local_output * 1
count[:, h_start:h_end, w_start:w_end, :] += 1
value = value[:, h_jitter_range:-h_jitter_range, w_jitter_range:-w_jitter_range, :]
count = count[:, h_jitter_range:-h_jitter_range, w_jitter_range:-w_jitter_range, :]
attn_output = torch.where(count>0, value/count, value)
gaussian_local = gaussian_filter(attn_output, kernel_size=(2*current_scale_num-1), sigma=1.0)
value = torch.zeros_like(norm_hidden_states)
count = torch.zeros_like(norm_hidden_states)
for index, global_view in enumerate(global_views):
h, w = global_view
global_states = norm_hidden_states[:, h::current_scale_num_h, w::current_scale_num_w, :]
global_states = rearrange(global_states, 'bh h w d -> bh (h w) d')
global_output = self.attn1(
global_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
global_output = rearrange(global_output, 'bh (h w) d -> bh h w d', h = int(global_output.shape[1] ** 0.5))
value[:, h::current_scale_num_h, w::current_scale_num_w, :] += global_output * 1
count[:, h::current_scale_num_h, w::current_scale_num_w, :] += 1
attn_output_global = torch.where(count>0, value/count, value)
gaussian_global = gaussian_filter(attn_output_global, kernel_size=(2*current_scale_num-1), sigma=1.0)
attn_output = gaussian_local + (attn_output_global - gaussian_global)
attn_output = rearrange(attn_output, 'bh h w d -> bh (h w) d')
else:
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
if self.use_ada_layer_norm_zero:
attn_output = gate_msa.unsqueeze(1) * attn_output
hidden_states = attn_output + hidden_states
# 2.5 GLIGEN Control
if gligen_kwargs is not None:
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
# 2.5 ends
# 3. Cross-Attention
if self.attn2 is not None:
norm_hidden_states = (
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
)
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
hidden_states = attn_output + hidden_states
# 4. Feed-forward
norm_hidden_states = self.norm3(hidden_states)
if self.use_ada_layer_norm_zero:
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
)
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
ff_output = torch.cat(
[
self.ff(hid_slice)
for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)
],
dim=self._chunk_dim,
)
else:
ff_output = self.ff(norm_hidden_states)
if self.use_ada_layer_norm_zero:
ff_output = gate_mlp.unsqueeze(1) * ff_output
hidden_states = ff_output + hidden_states
return hidden_states
def ori_forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
timestep: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
class_labels: Optional[torch.LongTensor] = None,
):
# Notice that normalization is always applied before the real computation in the following blocks.
# 0. Self-Attention
if self.use_ada_layer_norm:
norm_hidden_states = self.norm1(hidden_states, timestep)
elif self.use_ada_layer_norm_zero:
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
)
else:
norm_hidden_states = self.norm1(hidden_states)
# 2. Prepare GLIGEN inputs
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
if self.use_ada_layer_norm_zero:
attn_output = gate_msa.unsqueeze(1) * attn_output
hidden_states = attn_output + hidden_states
# 2.5 GLIGEN Control
if gligen_kwargs is not None:
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
# 2.5 ends
# 3. Cross-Attention
if self.attn2 is not None:
norm_hidden_states = (
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
)
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
hidden_states = attn_output + hidden_states
# 4. Feed-forward
norm_hidden_states = self.norm3(hidden_states)
if self.use_ada_layer_norm_zero:
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
)
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
ff_output = torch.cat(
[
self.ff(hid_slice)
for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)
],
dim=self._chunk_dim,
)
else:
ff_output = self.ff(norm_hidden_states)
if self.use_ada_layer_norm_zero:
ff_output = gate_mlp.unsqueeze(1) * ff_output
hidden_states = ff_output + hidden_states
return hidden_states |