Spaces:
Sleeping
Sleeping
File size: 9,488 Bytes
e9a044b 47446fb ef0c9ce e693f4b 47446fb 7f4ab63 47446fb 9c4bb92 e9a044b 8524bdd e9a044b 913d8ed e9a044b 7f4ab63 e9a044b b135a58 e9a044b b135a58 e9a044b d0c1ef3 e9a044b c9d9cec 80adfc7 c9d9cec e9a044b ce7f56c e9a044b e693f4b e9a044b 673e392 7f4ab63 e0aa9bd 7f4ab63 9c4bb92 dff909e 9c4bb92 dff909e 9c4bb92 dff909e 9c4bb92 7f4ab63 e0aa9bd 7f4ab63 6d9f96d 7f4ab63 c1ae727 673e392 e9a044b 9c4bb92 ef0c9ce d4f0d67 9c4bb92 d4f0d67 e9a044b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import gradio as gr
import os
import sys
import argparse
import random
from omegaconf import OmegaConf
import torch
import torchvision
from pytorch_lightning import seed_everything
from huggingface_hub import hf_hub_download
sys.path.insert(0, "scripts/evaluation")
from funcs import (
batch_ddim_sampling_freenoise,
load_model_checkpoint,
)
from utils.utils import instantiate_from_config
ckpt_path_1024 = "checkpoints/base_1024_v1/model.ckpt"
ckpt_dir_1024 = "checkpoints/base_1024_v1"
os.makedirs(ckpt_dir_1024, exist_ok=True)
hf_hub_download(repo_id="VideoCrafter/Text2Video-1024", filename="model.ckpt", local_dir=ckpt_dir_1024)
# ckpt_path_256 = "checkpoints/base_256_v1/model.pth"
# ckpt_dir_256 = "checkpoints/base_256_v1"
# os.makedirs(ckpt_dir_256, exist_ok=True)
# hf_hub_download(repo_id="MoonQiu/LongerCrafter", filename="model.pth", local_dir=ckpt_dir_256)
def infer(prompt, output_size, seed, num_frames, ddim_steps, unconditional_guidance_scale, save_fps):
window_size = 16
window_stride = 4
if output_size == "576x1024":
width = 1024
height = 576
config_1024 = "configs/inference_t2v_1024_v1.0_freenoise.yaml"
config_1024 = OmegaConf.load(config_1024)
model_config_1024 = config_1024.pop("model", OmegaConf.create())
model_1024 = instantiate_from_config(model_config_1024)
model_1024 = model_1024.cuda()
model_1024 = load_model_checkpoint(model_1024, ckpt_path_1024)
model_1024.eval()
model = model_1024
fps = 28
# elif output_size == "256x256":
# width = 256
# height = 256
# config_256 = "configs/inference_t2v_tconv256_v1.0_freenoise.yaml"
# config_256 = OmegaConf.load(config_256)
# model_config_256 = config_256.pop("model", OmegaConf.create())
# model_256 = instantiate_from_config(model_config_256)
# model_256 = model_256.cuda()
# model_256 = load_model_checkpoint(model_256, ckpt_path_256)
# model_256.eval()
# model = model_256
# fps = 8
if seed is None:
seed = int.from_bytes(os.urandom(2), "big")
print(f"Using seed: {seed}")
seed_everything(seed)
args = argparse.Namespace(
mode="base",
savefps=save_fps,
n_samples=1,
ddim_steps=ddim_steps,
ddim_eta=0.0,
bs=1,
height=height,
width=width,
frames=num_frames,
fps=fps,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_guidance_scale_temporal=None,
cond_input=None,
window_size=window_size,
window_stride=window_stride,
)
## latent noise shape
h, w = args.height // 8, args.width // 8
frames = model.temporal_length if args.frames < 0 else args.frames
channels = model.channels
x_T_total = torch.randn(
[args.n_samples, 1, channels, frames, h, w], device=model.device
).repeat(1, args.bs, 1, 1, 1, 1)
for frame_index in range(args.window_size, args.frames, args.window_stride):
list_index = list(
range(
frame_index - args.window_size,
frame_index + args.window_stride - args.window_size,
)
)
random.shuffle(list_index)
x_T_total[
:, :, :, frame_index : frame_index + args.window_stride
] = x_T_total[:, :, :, list_index]
batch_size = 1
noise_shape = [batch_size, channels, frames, h, w]
fps = torch.tensor([args.fps] * batch_size).to(model.device).long()
prompts = [prompt]
text_emb = model.get_learned_conditioning(prompts)
cond = {"c_crossattn": [text_emb], "fps": fps}
## inference
batch_samples = batch_ddim_sampling_freenoise(
model,
cond,
noise_shape,
args.n_samples,
args.ddim_steps,
args.ddim_eta,
args.unconditional_guidance_scale,
args=args,
x_T_total=x_T_total,
)
video_path = "output.mp4"
vid_tensor = batch_samples[0]
video = vid_tensor.detach().cpu()
video = torch.clamp(video.float(), -1.0, 1.0)
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
frame_grids = [
torchvision.utils.make_grid(framesheet, nrow=int(args.n_samples))
for framesheet in video
] # [3, 1*h, n*w]
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w]
grid = (grid + 1.0) / 2.0
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
torchvision.io.write_video(
video_path,
grid,
fps=args.savefps,
video_codec="h264",
options={"crf": "10"},
)
print(video_path)
return video_path
examples = [
["A chihuahua in astronaut suit floating in space, cinematic lighting, glow effect",],
["Campfire at night in a snowy forest with starry sky in the background",],
["A corgi is swimming quickly",],
["A panda is surfing in the universe",],
]
css = """
#col-container {max-width: 640px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex;
padding-left: 0.5rem !important;
padding-right: 0.5rem !important;
background-color: #000000;
justify-content: center;
align-items: center;
border-radius: 9999px !important;
max-width: 15rem;
height: 36px;
}
div#share-btn-container > div {
flex-direction: row;
background: black;
align-items: center;
}
#share-btn-container:hover {
background-color: #060606;
}
#share-btn {
all: initial;
color: #ffffff;
font-weight: 600;
cursor:pointer;
font-family: 'IBM Plex Sans', sans-serif;
margin-left: 0.5rem !important;
padding-top: 0.5rem !important;
padding-bottom: 0.5rem !important;
right:0;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
#share-btn-container.hidden {
display: none!important;
}
img[src*='#center'] {
display: inline-block;
margin: unset;
}
.footer {
margin-bottom: 45px;
margin-top: 10px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
"""
<h1 style="text-align: center;">LongerCrafter(FreeNoise) Text-to-Video</h1>
<p style="text-align: center;">
Tuning-Free Longer Video Diffusion via Noise Rescheduling <br />
</p>
"""
)
prompt_in = gr.Textbox(label="Prompt", placeholder="A chihuahua in astronaut suit floating in space, cinematic lighting, glow effect")
with gr.Row():
with gr.Accordion('FreeNoise Parameters (feel free to adjust these parameters based on your prompt): ', open=False):
with gr.Row():
output_size = gr.Dropdown(["576x1024"], value="576x1024", label="Output Size (around 1800s for 576x1024)")
# output_size = gr.Dropdown(["576x1024", "256x256"], value="576x1024", label="Output Size", info="576x1024 is watermark-free")
with gr.Row():
num_frames = gr.Slider(label='Frames (a multiple of 4)',
minimum=16,
maximum=32,
step=4,
value=32)
ddim_steps = gr.Slider(label='DDIM Steps',
minimum=5,
maximum=200,
step=1,
value=50)
with gr.Row():
unconditional_guidance_scale = gr.Slider(label='Unconditional Guidance Scale',
minimum=1.0,
maximum=20.0,
step=0.1,
value=12.0)
save_fps = gr.Slider(label='Save FPS',
minimum=1,
maximum=30,
step=1,
value=10)
with gr.Row():
seed = gr.Slider(label='Random Seed',
minimum=0,
maximum=10000,
step=1,
value=123)
submit_btn = gr.Button("Generate")
video_result = gr.Video(label="Video Output")
gr.Examples(examples=examples, inputs=[prompt_in, output_size, seed, num_frames, ddim_steps, unconditional_guidance_scale, save_fps])
submit_btn.click(fn=infer,
inputs=[prompt_in, output_size, seed, num_frames, ddim_steps, unconditional_guidance_scale, save_fps],
outputs=[video_result],
api_name="zrscp")
demo.queue(max_size=12).launch(show_api=True) |