File size: 9,488 Bytes
e9a044b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47446fb
ef0c9ce
 
e693f4b
47446fb
7f4ab63
 
 
 
47446fb
 
9c4bb92
e9a044b
 
 
 
 
 
8524bdd
e9a044b
 
 
913d8ed
e9a044b
 
 
7f4ab63
 
 
 
 
 
 
 
 
 
 
 
 
e9a044b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b135a58
e9a044b
 
 
 
 
 
 
 
 
 
 
 
b135a58
e9a044b
 
 
 
 
 
 
 
 
d0c1ef3
e9a044b
c9d9cec
80adfc7
 
 
 
c9d9cec
 
e9a044b
ce7f56c
e9a044b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e693f4b
e9a044b
 
 
 
 
 
 
673e392
7f4ab63
 
 
 
e0aa9bd
7f4ab63
9c4bb92
dff909e
9c4bb92
 
 
 
 
dff909e
 
9c4bb92
 
 
 
dff909e
 
 
 
9c4bb92
 
 
 
 
7f4ab63
e0aa9bd
7f4ab63
6d9f96d
7f4ab63
 
 
c1ae727
673e392
e9a044b
9c4bb92
ef0c9ce
d4f0d67
9c4bb92
d4f0d67
 
 
e9a044b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import gradio as gr

import os
import sys
import argparse
import random
from omegaconf import OmegaConf
import torch
import torchvision
from pytorch_lightning import seed_everything
from huggingface_hub import hf_hub_download

sys.path.insert(0, "scripts/evaluation")
from funcs import (
    batch_ddim_sampling_freenoise,
    load_model_checkpoint,
)
from utils.utils import instantiate_from_config

ckpt_path_1024 = "checkpoints/base_1024_v1/model.ckpt"
ckpt_dir_1024 = "checkpoints/base_1024_v1"
os.makedirs(ckpt_dir_1024, exist_ok=True)
hf_hub_download(repo_id="VideoCrafter/Text2Video-1024", filename="model.ckpt", local_dir=ckpt_dir_1024)

# ckpt_path_256 = "checkpoints/base_256_v1/model.pth"
# ckpt_dir_256 = "checkpoints/base_256_v1"
# os.makedirs(ckpt_dir_256, exist_ok=True)
# hf_hub_download(repo_id="MoonQiu/LongerCrafter", filename="model.pth", local_dir=ckpt_dir_256)


def infer(prompt, output_size, seed, num_frames, ddim_steps, unconditional_guidance_scale, save_fps):
    window_size = 16
    window_stride = 4
    
    if output_size == "576x1024":
        width = 1024
        height = 576
        config_1024 = "configs/inference_t2v_1024_v1.0_freenoise.yaml"
        config_1024 = OmegaConf.load(config_1024)
        model_config_1024 = config_1024.pop("model", OmegaConf.create())
        model_1024 = instantiate_from_config(model_config_1024)
        model_1024 = model_1024.cuda()
        model_1024 = load_model_checkpoint(model_1024, ckpt_path_1024)
        model_1024.eval()
        model = model_1024
        fps = 28
    # elif output_size == "256x256":
    #     width = 256 
    #     height = 256
    #     config_256 = "configs/inference_t2v_tconv256_v1.0_freenoise.yaml"
    #     config_256 = OmegaConf.load(config_256)
    #     model_config_256 = config_256.pop("model", OmegaConf.create())
    #     model_256 = instantiate_from_config(model_config_256)
    #     model_256 = model_256.cuda()
    #     model_256 = load_model_checkpoint(model_256, ckpt_path_256)
    #     model_256.eval()
    #     model = model_256
    #     fps = 8

    if seed is None:
        seed = int.from_bytes(os.urandom(2), "big")
    print(f"Using seed: {seed}")
    seed_everything(seed)

    args = argparse.Namespace(
        mode="base",
        savefps=save_fps,
        n_samples=1,
        ddim_steps=ddim_steps,
        ddim_eta=0.0,
        bs=1,
        height=height,
        width=width,
        frames=num_frames,
        fps=fps,
        unconditional_guidance_scale=unconditional_guidance_scale,
        unconditional_guidance_scale_temporal=None,
        cond_input=None,
        window_size=window_size,
        window_stride=window_stride,
    )

    ## latent noise shape
    h, w = args.height // 8, args.width // 8
    frames = model.temporal_length if args.frames < 0 else args.frames
    channels = model.channels

    x_T_total = torch.randn(
        [args.n_samples, 1, channels, frames, h, w], device=model.device
    ).repeat(1, args.bs, 1, 1, 1, 1)
    for frame_index in range(args.window_size, args.frames, args.window_stride):
        list_index = list(
            range(
                frame_index - args.window_size,
                frame_index + args.window_stride - args.window_size,
            )
        )
        random.shuffle(list_index)
        x_T_total[
            :, :, :, frame_index : frame_index + args.window_stride
        ] = x_T_total[:, :, :, list_index]

    batch_size = 1
    noise_shape = [batch_size, channels, frames, h, w]
    fps = torch.tensor([args.fps] * batch_size).to(model.device).long()
    prompts = [prompt]
    text_emb = model.get_learned_conditioning(prompts)

    cond = {"c_crossattn": [text_emb], "fps": fps}

    ## inference
    batch_samples = batch_ddim_sampling_freenoise(
        model,
        cond,
        noise_shape,
        args.n_samples,
        args.ddim_steps,
        args.ddim_eta,
        args.unconditional_guidance_scale,
        args=args,
        x_T_total=x_T_total,
    )

    video_path = "output.mp4"
    vid_tensor = batch_samples[0]
    video = vid_tensor.detach().cpu()
    video = torch.clamp(video.float(), -1.0, 1.0)
    video = video.permute(2, 0, 1, 3, 4)  # t,n,c,h,w

    frame_grids = [
        torchvision.utils.make_grid(framesheet, nrow=int(args.n_samples))
        for framesheet in video
    ]  # [3, 1*h, n*w]
    grid = torch.stack(frame_grids, dim=0)  # stack in temporal dim [t, 3, n*h, w]
    grid = (grid + 1.0) / 2.0
    grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)

    torchvision.io.write_video(
        video_path,
        grid,
        fps=args.savefps,
        video_codec="h264",
        options={"crf": "10"},
    )
    
    print(video_path)
    return video_path

examples = [
    ["A chihuahua in astronaut suit floating in space, cinematic lighting, glow effect",],
    ["Campfire at night in a snowy forest with starry sky in the background",],
    ["A corgi is swimming quickly",],
    ["A panda is surfing in the universe",],
]

css = """
#col-container {max-width: 640px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
.animate-spin {
  animation: spin 1s linear infinite;
}
@keyframes spin {
  from {
      transform: rotate(0deg);
  }
  to {
      transform: rotate(360deg);
  }
}
#share-btn-container {
  display: flex; 
  padding-left: 0.5rem !important; 
  padding-right: 0.5rem !important; 
  background-color: #000000; 
  justify-content: center; 
  align-items: center; 
  border-radius: 9999px !important; 
  max-width: 15rem;
  height: 36px;
}
div#share-btn-container > div {
    flex-direction: row;
    background: black;
    align-items: center;
}
#share-btn-container:hover {
  background-color: #060606;
}
#share-btn {
  all: initial; 
  color: #ffffff;
  font-weight: 600; 
  cursor:pointer; 
  font-family: 'IBM Plex Sans', sans-serif; 
  margin-left: 0.5rem !important; 
  padding-top: 0.5rem !important; 
  padding-bottom: 0.5rem !important;
  right:0;
}
#share-btn * {
  all: unset;
}
#share-btn-container div:nth-child(-n+2){
  width: auto !important;
  min-height: 0px !important;
}
#share-btn-container .wrap {
  display: none !important;
}
#share-btn-container.hidden {
  display: none!important;
}
img[src*='#center'] { 
    display: inline-block;
    margin: unset;
}
.footer {
        margin-bottom: 45px;
        margin-top: 10px;
        text-align: center;
        border-bottom: 1px solid #e5e5e5;
    }
    .footer>p {
        font-size: .8rem;
        display: inline-block;
        padding: 0 10px;
        transform: translateY(10px);
        background: white;
    }
    .dark .footer {
        border-color: #303030;
    }
    .dark .footer>p {
        background: #0b0f19;
    }
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(
            """
            <h1 style="text-align: center;">LongerCrafter(FreeNoise) Text-to-Video</h1>
            <p style="text-align: center;">
            Tuning-Free Longer Video Diffusion via Noise Rescheduling <br />
            </p>
                        
            """
        )

        prompt_in = gr.Textbox(label="Prompt", placeholder="A chihuahua in astronaut suit floating in space, cinematic lighting, glow effect")

        with gr.Row():
            with gr.Accordion('FreeNoise Parameters (feel free to adjust these parameters based on your prompt): ', open=False):
                with gr.Row():
                    output_size = gr.Dropdown(["576x1024"], value="576x1024", label="Output Size (around 1800s for 576x1024)")
                    # output_size = gr.Dropdown(["576x1024", "256x256"], value="576x1024", label="Output Size", info="576x1024 is watermark-free")
                with gr.Row():
                    num_frames = gr.Slider(label='Frames (a multiple of 4)',
                             minimum=16,
                             maximum=32,
                             step=4,
                             value=32)
                    ddim_steps = gr.Slider(label='DDIM Steps',
                             minimum=5,
                             maximum=200,
                             step=1,
                             value=50)
                with gr.Row():
                    unconditional_guidance_scale = gr.Slider(label='Unconditional Guidance Scale',
                             minimum=1.0,
                             maximum=20.0,
                             step=0.1,
                             value=12.0)
                    save_fps = gr.Slider(label='Save FPS',
                             minimum=1,
                             maximum=30,
                             step=1,
                             value=10)
                with gr.Row():
                    seed = gr.Slider(label='Random Seed',
                             minimum=0,
                             maximum=10000,
                             step=1,
                             value=123)

        submit_btn = gr.Button("Generate")
        video_result = gr.Video(label="Video Output")

        gr.Examples(examples=examples, inputs=[prompt_in, output_size, seed, num_frames, ddim_steps, unconditional_guidance_scale, save_fps])

    submit_btn.click(fn=infer,
            inputs=[prompt_in, output_size, seed, num_frames, ddim_steps, unconditional_guidance_scale, save_fps],
            outputs=[video_result],
            api_name="zrscp")

demo.queue(max_size=12).launch(show_api=True)