File size: 5,074 Bytes
34fdfd1
6fceecb
34fdfd1
 
 
 
 
 
 
64fd6a7
34fdfd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fceecb
 
34fdfd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fceecb
34fdfd1
6fceecb
 
34fdfd1
 
 
 
 
 
 
6fceecb
 
34fdfd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c962c9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# app.py
import spaces
import os
import gradio as gr
import torch
from PIL import Image
from transformers import AutoTokenizer, AutoModelForCausalLM
import timm
from torchvision import transforms
#from llama_cpp import Llama
from peft import PeftModel

# 1. Model Definitions (Same as in training script)
class SigLIPImageEncoder(torch.nn.Module):
    def __init__(self, model_name='resnet50', embed_dim=512, pretrained_path=None):
        super().__init__()
        self.model = timm.create_model(model_name, pretrained=False, num_classes=0, global_pool='avg') # pretrained=False
        self.embed_dim = embed_dim
        self.projection = torch.nn.Linear(self.model.num_features, embed_dim)

        if pretrained_path:
            self.load_state_dict(torch.load(pretrained_path, map_location=torch.device('cpu'))) # Load to CPU first
            print(f"Loaded SigLIP image encoder from {pretrained_path}")
        else:
            print("Initialized SigLIP image encoder without pretrained weights.")

    def forward(self, image):
        features = self.model(image)
        embedding = self.projection(features)
        return embedding

# 2. Load Models and Tokenizer
phi3_model_path = "QuantFactory/Phi-3-mini-4k-instruct-GGUF"  # Path to your quantized Phi-3 GGUF model
peft_model_path = "./qlora_phi3_model"
image_model_name = 'resnet50'
image_embed_dim = 512
siglip_pretrained_path = "image_encoder.pth" # Path to your pretrained SigLIP model

#device = torch.device("cpu") # Force CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# Load Tokenizer (using a compatible tokenizer)
text_tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct", trust_remote_code=True) # Or a compatible tokenizer
text_tokenizer.pad_token = text_tokenizer.eos_token # Important for training

# Image Transformations
image_transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

# Load SigLIP Image Encoder
image_encoder = SigLIPImageEncoder(model_name=image_model_name, embed_dim=image_embed_dim, pretrained_path=siglip_pretrained_path).to(device)
image_encoder.eval() # Set to evaluation mode

# Load Phi-3 model using llama.cpp
#base_model = Llama(
#    model_path=phi3_model_path,
#    n_gpu_layers=0,  # Ensure no GPU usage
#    n_ctx=2048,       # Adjust context length as needed
#    verbose=True,
#)


#base_model = Llama.from_pretrained(
#	repo_id="QuantFactory/Phi-3-mini-4k-instruct-GGUF",
#	filename="Phi-3-mini-4k-instruct.Q2_K.gguf",
#    n_gpu_layers=0,
#    n_ctx=2048,
#    verbose=True 
#)

base_model_name="microsoft/Phi-3-mini-4k-instruct"
#device = "cuda"

#base_model = AutoModelForCausalLM.from_pretrained(base_model_name, torch_dtype=torch.float32, device_map={"": device})
base_model = AutoModelForCausalLM.from_pretrained(base_model_name, torch_dtype=torch.float32, device_map="auto")


# Load and merge
model = PeftModel.from_pretrained(base_model, peft_model_path, offload_dir='./offload')
model = model.merge_and_unload()
print("phi-3 model loaded sucessfully")  
# 3. Inference Function

@spaces.GPU
def predict(image, question):
    """
    Takes an image and a question as input and returns an answer.
    """
    if image is None or question is None or question == "":
        return "Please provide both an image and a question."

    try:
        image = Image.fromarray(image).convert("RGB")
        image = image_transform(image).unsqueeze(0).to(device)

        # Get image embeddings
        with torch.no_grad():
            image_embeddings = image_encoder(image)
            # Flatten the image embeddings for simplicity
            image_embeddings = image_embeddings.flatten().tolist()

        # Create the prompt with image embeddings
        prompt = f"Question: {question}\nImage Embeddings: {image_embeddings}\nAnswer:"

        # Generate answer using llama.cpp
        output = model(
            prompt,
            max_tokens=128,
            stop=["Q:", "\n"],
            echo=False,
        )

        answer = output["choices"][0]["text"].strip()

        return answer

    except Exception as e:
        return f"An error occurred: {str(e)}"

# 4. Gradio Interface
iface = gr.Interface(
    fn=predict,
    inputs=[
        gr.Image(label="Upload an Image"),
        gr.Textbox(label="Ask a Question about the Image", placeholder="What is in the image?")
    ],
    outputs=gr.Textbox(label="Answer"),
    title="Image Question Answering with Phi-3 and SigLIP (CPU)",
    description="Ask questions about an image and get answers powered by Phi-3 (llama.cpp) and SigLIP.",
    examples=[
        ["cat_0006.png", "Create a interesting story about this image?"],
        ["bird_0004.png", "Can you describe this image?"],
        ["truck_0003.png", "Elaborate the setting of the image"],
        ["ship_0007.png", "Explain the purpose of image"]
    ]
)

# 5. Launch the App
if __name__ == "__main__":
    iface.launch()