Spaces:
Running
Running
File size: 34,655 Bytes
d9aa247 f1fe2d6 d9aa247 f1fe2d6 d9aa247 f1fe2d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 |
import logging
import numpy as np
import pandas as pd
import os
from datetime import datetime
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.cluster import KMeans
logger = logging.getLogger(__name__)
def get_hardcoded_recommendations(limit=10):
"""Return hardcoded popular songs as recommendations when all else fails"""
popular_songs = [
{
'title': 'Stay',
'artist': 'The Kid LAROI, Justin Bieber',
'album': 'Stay',
'spotify_id': '2LRoIwlKmHjgvigdNGBHNo',
'image_url': 'https://i.scdn.co/image/ab67616d0000b273171c6ee052142d4301bab492',
'popularity': 95
},
{
'title': 'Blinding Lights',
'artist': 'The Weeknd',
'album': 'After Hours',
'spotify_id': '0pqnGHJpmpxLKifKRmU6WP',
'image_url': 'https://i.scdn.co/image/ab67616d0000b2738863bc11d2aa12b54f5aeb36',
'popularity': 93
},
{
'title': 'Despacito',
'artist': 'Luis Fonsi',
'album': 'VIDA',
'spotify_id': '7qiZfU4dY1lWllzX7mPBI3',
'image_url': 'https://i.scdn.co/image/ab67616d0000b273ef0d4234e1a645740f77d59c',
'popularity': 91
},
{
'title': 'Shape of You',
'artist': 'Ed Sheeran',
'album': '÷ (Divide)',
'spotify_id': '0tgVpDi06FyKpA1z0VMD4v',
'image_url': 'https://i.scdn.co/image/ab67616d0000b273ba5db46f4b838ef6027e6f96',
'popularity': 90
},
{
'title': 'Dance Monkey',
'artist': 'Tones and I',
'album': 'The Kids Are Coming',
'spotify_id': '1rgnBhdG2JDFTbYkYRZAku',
'image_url': 'https://i.scdn.co/image/ab67616d0000b273c6af5ffa661a365b77df6ef6',
'popularity': 89
}
]
return popular_songs[:limit]
class MusicRecommender:
"""
A music recommendation system using clustering and content-based filtering based on CSV datasets.
"""
def __init__(self):
self.logger = logging.getLogger(__name__)
self.data = None
self.genre_data = None
self.year_data = None
self.features = None
self.name_to_index = None
self.id_to_index = None
self.cluster_model = None
self.song_cluster_labels = None
try:
# Load datasets
# Get the directory of the current script for HF Spaces compatibility
current_dir = os.path.dirname(os.path.abspath(__file__))
datasets_path = os.path.join(current_dir, 'datasets')
# Skip Music.csv as it has an invalid format with song titles as column names
self.logger.info("Skipping Music.csv due to invalid format, using data.csv directly")
# Load data.csv which has the correct format
self.data = pd.read_csv(os.path.join(datasets_path, 'data.csv'),
on_bad_lines='skip',
engine='python')
self.logger.info("Loaded data.csv dataset")
# Load genre and year data
try:
self.genre_data = pd.read_csv(os.path.join(datasets_path, 'data_by_genres.csv'),
on_bad_lines='skip',
engine='python')
self.year_data = pd.read_csv(os.path.join(datasets_path, 'data_by_year.csv'),
on_bad_lines='skip',
engine='python')
self.logger.info("Loaded genre and year datasets")
except FileNotFoundError:
self.logger.warning("Genre or year datasets not found, continuing with limited functionality")
# Prepare data and build clusters
self._prepare_data()
self._build_clusters()
self.logger.info("Music Recommender initialized successfully")
except Exception as e:
self.logger.error(f"Error initializing Music Recommender: {e}", exc_info=True)
raise
def _prepare_data(self):
"""Prepare the data for recommendation"""
try:
# First, print available columns to diagnose the issue
self.logger.info(f"Available columns in dataset: {list(self.data.columns)}")
# Map common column names to standardized versions (for compatibility)
column_mapping = {
'name': 'name',
'title': 'name', # Music.csv might use 'title' instead of 'name'
'track_name': 'name', # Another possible column name
'artist': 'artists', # Music.csv uses 'artist', we standardize to 'artists'
'artists': 'artists',
'spotify_id': 'id', # Music.csv uses 'spotify_id', we standardize to 'id'
'id': 'id',
'img': 'image_url', # Music.csv uses 'img', we map to 'image_url'
'release_date': 'year'
}
# Create missing columns with default values if needed
for std_col, mapping_col in column_mapping.items():
if std_col in self.data.columns and mapping_col not in self.data.columns:
self.data[mapping_col] = self.data[std_col]
self.logger.info(f"Mapped column {std_col} to {mapping_col}")
# Create required columns if missing
if 'name' not in self.data.columns:
# Try to find any column that might contain song names
possible_name_columns = ['track_name', 'title', 'track', 'song_name']
for col in possible_name_columns:
if col in self.data.columns:
self.data['name'] = self.data[col]
self.logger.info(f"Using {col} as name")
break
else:
# If no name column found, create one from the filename or index
self.data['name'] = [f"Unknown Song {i}" for i in range(len(self.data))]
self.logger.warning("No name column found, using placeholder names")
if 'id' not in self.data.columns:
if 'spotify_id' in self.data.columns:
self.data['id'] = self.data['spotify_id']
self.logger.info("Using spotify_id as id")
else:
self.data['id'] = [f"song_{i}" for i in range(len(self.data))]
self.logger.info("Created synthetic ids")
if 'artists' not in self.data.columns:
if 'artist' in self.data.columns:
self.data['artists'] = self.data['artist']
self.logger.info("Using artist as artists")
else:
self.data['artists'] = 'Unknown Artist'
self.logger.warning("No artist column found, using default")
if 'popularity' not in self.data.columns:
# Calculate synthetic popularity (can use energy or other features)
if 'energy' in self.data.columns:
self.logger.info("Creating synthetic popularity based on energy")
self.data['popularity'] = (self.data['energy'] * 100).round().astype(int)
else:
self.logger.warning("No popularity data, assigning random values")
self.data['popularity'] = np.random.randint(30, 90, size=len(self.data))
if 'album_name' not in self.data.columns:
self.data['album_name'] = 'Unknown'
# Create a song name to index mapping
self.name_to_index = {name: i for i, name in enumerate(self.data['name'].values)}
# Create a song ID to index mapping
self.id_to_index = {id: i for i, id in enumerate(self.data['id'].values)}
# Define features for content-based filtering based on available columns
# Prioritize specific features if available
all_possible_features = [
'acousticness', 'danceability', 'energy', 'instrumentalness',
'liveness', 'loudness', 'speechiness', 'tempo', 'valence',
'acousticness_artist', 'danceability_artist', 'energy_artist',
'instrumentalness_artist', 'liveness_artist', 'speechiness_artist', 'valence_artist'
]
# Use features that exist in the dataset
self.features = [f for f in all_possible_features if f in self.data.columns]
if not self.features:
self.logger.error("No valid features found in dataset")
raise ValueError("No valid features found in dataset")
self.logger.info(f"Using features: {self.features}")
# Normalize features to 0-1 range
scaler = StandardScaler()
self.data[self.features] = scaler.fit_transform(self.data[self.features])
self.logger.info(f"Prepared data with {len(self.data)} songs and {len(self.features)} features")
except Exception as e:
self.logger.error(f"Error preparing data: {e}", exc_info=True)
raise
def _build_clusters(self):
"""Build KMeans clusters of songs for recommendation"""
try:
# Define the pipeline
cluster_pipeline = Pipeline([
('scaler', StandardScaler()),
('kmeans', KMeans(n_clusters=20, verbose=False, random_state=42))
])
# Select only numeric features for clustering
numeric_cols = self.data.select_dtypes(include=[np.number]).columns.tolist()
# Ensure we have the features we need
if not set(self.features).issubset(set(numeric_cols)):
self.logger.warning("Some features are not numeric, using all available numeric columns instead")
# Use features that exist in the dataset
X = self.data[numeric_cols]
# Fit the pipeline
cluster_pipeline.fit(X)
# Store the model
self.cluster_model = cluster_pipeline
# Add cluster labels to the data
self.song_cluster_labels = cluster_pipeline.predict(X)
self.data['cluster_label'] = self.song_cluster_labels
self.logger.info("Built song clusters successfully")
except Exception as e:
self.logger.error(f"Error building clusters: {e}", exc_info=True)
self.cluster_model = None
def find_similar_songs(self, song_name, n=10):
"""Find songs similar to the given song name"""
try:
# Check if song exists in dataset by name
song_idx = None
if song_name in self.name_to_index:
song_idx = self.name_to_index[song_name]
# If not found by name, try as spotify_id
elif self.id_to_index and song_name in self.id_to_index:
song_idx = self.id_to_index[song_name]
# If song not found or clusters unavailable, try by partial name match before falling back
if song_idx is None:
# Try partial matching with song names
matched_songs = [idx for name, idx in self.name_to_index.items()
if song_name.lower() in name.lower()]
if matched_songs:
# Use the first match
song_idx = matched_songs[0]
self.logger.info(f"Found song by partial name match: {song_name} -> {self.data.iloc[song_idx]['name']}")
else:
# Try partial matching with artist names
artist_col = 'artists' if 'artists' in self.data.columns else 'artist'
matched_by_artist = self.data[self.data[artist_col].str.contains(song_name, case=False, na=False)]
if not matched_by_artist.empty:
song_idx = matched_by_artist.iloc[0].name
self.logger.info(f"Found song by artist match: {song_name} -> {self.data.iloc[song_idx]['name']}")
# If still no match or clusters unavailable, fall back to popularity
if song_idx is None or self.cluster_model is None:
self.logger.warning(f"Song '{song_name}' not found or clustering unavailable, using popular songs")
return self.get_popular_songs(n)
song_data = self.data.iloc[song_idx]
# Make sure we have features for similarity calculation
if not self.features:
self.logger.warning("No features available for similarity calculation")
return self.get_popular_songs(n)
song_features = song_data[self.features].values.reshape(1, -1)
# Approach 1: Get songs from the same cluster
if 'cluster_label' in self.data.columns:
cluster = song_data['cluster_label']
cluster_songs = self.data[self.data['cluster_label'] == cluster]
# If cluster too small, increase the sample from similar clusters
if len(cluster_songs) < n * 2:
# Get song vector and cluster centers
song_vector = song_data[self.features].values.reshape(1, -1)
# Get other clusters sorted by distance to this song
other_clusters = self.data[self.data['cluster_label'] != cluster]
other_clusters_feat = other_clusters[self.features].values
# Calculate distances to all other songs
distances = cosine_similarity(song_vector, other_clusters_feat)[0]
other_clusters = other_clusters.copy()
other_clusters['distance'] = distances
# Get top songs from other clusters
top_other_clusters = other_clusters.sort_values('distance', ascending=False).head(n)
# Combine with original cluster
combined = pd.concat([cluster_songs, top_other_clusters])
combined = combined.drop_duplicates(subset=['id'])
# Sort combined by distance or popularity if distance not available
if 'distance' in combined.columns:
cluster_songs = combined.sort_values('distance', ascending=False)
else:
cluster_songs = combined.sort_values('popularity', ascending=False)
# Approach 2: If no clusters or too few songs, use cosine similarity directly
if 'cluster_label' not in self.data.columns or len(cluster_songs) < n:
# Use the most direct similarity approach
similarity = cosine_similarity(song_features, self.data[self.features].values)[0]
indices = np.argsort(similarity)[::-1]
# Remove the song itself
indices = indices[indices != song_idx]
similar_song_indices = indices[:n]
# Convert to DataFrame
similar_songs = self.data.iloc[similar_song_indices]
else:
# If we have enough songs in cluster, sample them
exclude_idx = cluster_songs.index.get_loc(song_idx) if song_idx in cluster_songs.index else -1
similar_songs = cluster_songs.drop(song_idx, errors='ignore').sample(min(n, len(cluster_songs)-1))
# If still not enough, add popular songs
if len(similar_songs) < n:
remaining = n - len(similar_songs)
popular_indices = self.data.sort_values('popularity', ascending=False).index
# Remove songs already selected and the input song
popular_indices = [i for i in popular_indices if i not in similar_songs.index and i != song_idx]
# Take only what we need
popular_indices = popular_indices[:remaining]
additional_songs = self.data.loc[popular_indices]
similar_songs = pd.concat([similar_songs, additional_songs])
# Convert to standard format
recommendations = []
for _, song in similar_songs.iterrows():
image_url = None
# Check for image URL in various possible columns
for img_col in ['img', 'image_url', 'thumbnail_url']:
if img_col in song and song[img_col]:
image_url = song[img_col]
break
# Ensure we have all required fields with defaults
rec = {
'title': song['name'],
'artist': song['artists'] if 'artists' in song else 'Unknown Artist',
'album': song.get('album_name', 'Unknown'),
'spotify_id': song['id'],
'image_url': image_url,
'popularity': int(song.get('popularity', 50))
}
recommendations.append(rec)
return recommendations
except Exception as e:
self.logger.error(f"Error finding similar songs: {e}", exc_info=True)
return self.get_popular_songs(n)
def get_recommendations_by_genre(self, genre, n=10):
"""Get recommendations based on genre"""
try:
# Check if we have genre data
if self.genre_data is None or 'genres' not in self.genre_data.columns:
self.logger.warning("No genre data available, using popular songs")
return self.get_popular_songs(n)
# Filter genre data
genre_matches = self.genre_data[self.genre_data['genres'].str.contains(genre, case=False, na=False)]
if not genre_matches.empty:
# Get songs from the top matching genres
top_genres = genre_matches.head(5)['genres'].values
# Find songs matching these genres
recommendations = []
# Check which genre column we have in the main data
genre_column = None
for possible_col in ['genres', 'genre', 'artist_genres']:
if possible_col in self.data.columns:
genre_column = possible_col
break
# If no genre column, try using artist column as a proxy
if not genre_column and 'artists' in self.data.columns:
self.logger.info("No genre column found, using artist column as proxy")
genre_column = 'artists'
# If we have a column to match against
if genre_column:
for g in top_genres:
# Try to match by genre/artist
matches = self.data[self.data[genre_column].str.contains(g, case=False, na=False)]
if not matches.empty:
# Take a sample of songs from this genre
sample_size = min(n // 5 + 1, len(matches))
sample = matches.sample(sample_size)
for _, song in sample.iterrows():
# Get image URL from the appropriate column
image_url = None
for img_col in ['img', 'image_url', 'thumbnail_url']:
if img_col in song and song[img_col]:
image_url = song[img_col]
break
recommendations.append({
'title': song['name'],
'artist': song['artists'] if 'artists' in song else 'Unknown Artist',
'album': song.get('album_name', 'Unknown'),
'spotify_id': song['id'],
'image_url': image_url,
'popularity': int(song.get('popularity', 50))
})
if len(recommendations) >= n:
break
if len(recommendations) >= n:
break
# If we don't have enough recommendations, add popular songs
if len(recommendations) < n:
recommendations.extend(self.get_popular_songs(n - len(recommendations)))
return recommendations[:n]
else:
self.logger.warning(f"No matches found for genre: {genre}")
return self.get_popular_songs(n)
except Exception as e:
self.logger.error(f"Error getting recommendations by genre: {e}", exc_info=True)
return self.get_popular_songs(n)
def get_popular_songs(self, n=10):
"""Get popular songs as fallback"""
try:
# Make sure we have at least one song
if len(self.data) == 0:
return get_hardcoded_recommendations(n)
# Sort by popularity and return top n
if 'popularity' in self.data.columns:
popular = self.data.sort_values('popularity', ascending=False).head(100)
else:
# No popularity column, use random sampling
self.logger.warning("No popularity column found, using random sampling")
popular = self.data.sample(min(100, len(self.data)))
# Take a random sample from top 100
sample = popular.sample(min(n, len(popular)))
# Convert to song objects
recommendations = []
for _, song in sample.iterrows():
image_url = None
# Check for image URL in various possible columns
for img_col in ['img', 'image_url', 'thumbnail_url']:
if img_col in song and song[img_col]:
image_url = song[img_col]
break
# Ensure we have all required fields with defaults
rec = {
'title': song['name'],
'artist': song['artists'] if 'artists' in song else 'Unknown Artist',
'album': song.get('album_name', 'Unknown'),
'spotify_id': song['id'],
'image_url': image_url,
'popularity': int(song.get('popularity', 50))
}
recommendations.append(rec)
return recommendations
except Exception as e:
self.logger.error(f"Error getting popular songs: {e}", exc_info=True)
return get_hardcoded_recommendations(n)
def get_recommendations(self, query, n=10):
"""Get recommendations based on a query"""
try:
if not query or not isinstance(query, str):
self.logger.warning(f"Invalid query: {query}")
return self.get_popular_songs(n)
# Standardize columns if needed
name_column = 'name'
artists_column = 'artists' if 'artists' in self.data.columns else 'artist'
# Try exact match first
exact_matches = self.data[self.data[name_column].str.lower() == query.lower()]
if not exact_matches.empty:
# Use the first exact match
song_name = exact_matches.iloc[0][name_column]
return self.find_similar_songs(song_name, n)
# Try to find the song in our dataset with partial matching
partial_matches = self.data[self.data[name_column].str.contains(query, case=False, na=False)]
if not partial_matches.empty:
# Sort by popularity and string length (prefer shorter, more popular matches)
partial_matches['name_len'] = partial_matches[name_column].str.len()
sorted_matches = partial_matches.sort_values(['popularity', 'name_len'],
ascending=[False, True])
# Use the best match
song_name = sorted_matches.iloc[0][name_column]
return self.find_similar_songs(song_name, n)
# Try matching by artist if no song matches
artist_matches = self.data[self.data[artists_column].str.contains(query, case=False, na=False)]
if not artist_matches.empty:
# Get the most popular song by this artist
popular_by_artist = artist_matches.sort_values('popularity', ascending=False).iloc[0]
song_name = popular_by_artist[name_column]
self.logger.info(f"No song match, using artist match: {query} -> {song_name}")
return self.find_similar_songs(song_name, n)
self.logger.warning(f"No matches found for query: {query}")
return self.get_popular_songs(n)
except Exception as e:
self.logger.error(f"Error getting recommendations: {e}", exc_info=True)
return self.get_popular_songs(n)
def get_content_based_recommendations(self, seed_tracks, limit=10):
"""Get content-based recommendations based on seed tracks"""
if self.data is None:
return get_hardcoded_recommendations(limit)
try:
# Remove duplicate seed tracks and ensure we use at most 5 unique tracks
unique_seed_tracks = list(dict.fromkeys(seed_tracks))[:5]
# Fallback to CSV-based recommendations
all_recommendations = []
weights = [0.5, 0.2, 0.15, 0.1, 0.05] # More weight to recent songs
for i, track_id in enumerate(unique_seed_tracks):
if i >= len(weights):
break
# Find similar songs in CSV data
similar_songs = self.find_similar_songs(track_id, n=20)
if similar_songs:
for song in similar_songs:
song['weight'] = weights[i]
all_recommendations.extend(similar_songs)
if not all_recommendations:
return get_hardcoded_recommendations(limit)
# Group by song title and combine weights
recommendation_dict = {}
for rec in all_recommendations:
title = rec['title']
if title in recommendation_dict:
recommendation_dict[title]['weight'] += rec['weight']
else:
recommendation_dict[title] = rec
# Convert back to list and sort by weight
final_recommendations = list(recommendation_dict.values())
final_recommendations.sort(key=lambda x: x['weight'], reverse=True)
# Remove weight field and return top recommendations
for rec in final_recommendations:
if 'weight' in rec:
del rec['weight']
return final_recommendations[:limit]
except Exception as e:
self.logger.error(f"Error getting content-based recommendations: {e}", exc_info=True)
return get_hardcoded_recommendations(limit)
# Global recommender instance
_recommender = None
def get_recommender():
"""Get or create the global recommender instance"""
global _recommender
if _recommender is None:
try:
_recommender = MusicRecommender()
except Exception as e:
logger.error(f"Failed to initialize recommender: {e}", exc_info=True)
# Return a minimal class that just returns hardcoded recommendations
class FallbackRecommender:
def get_recommendations(self, query=None, n=10):
return get_hardcoded_recommendations(n)
def get_popular_songs(self, n=10):
return get_hardcoded_recommendations(n)
def get_content_based_recommendations(self, seed_tracks, limit=10):
return get_hardcoded_recommendations(limit)
def find_similar_songs(self, song_name, n=10):
return get_hardcoded_recommendations(n)
def get_recommendations_by_genre(self, genre, n=10):
return get_hardcoded_recommendations(n)
_recommender = FallbackRecommender()
return _recommender
def get_hybrid_recommendations(user, limit=10):
"""
Get recommendations based on user's downloaded songs using a hybrid approach
"""
try:
recommender = get_recommender()
# Check if user has any songs
if not hasattr(user, 'songs') or not user.songs.exists():
logger.warning(f"User {user.id} has no songs - using popular songs")
return recommender.get_popular_songs(limit)
# Get user's latest songs
latest_songs = user.songs.order_by('-created_at')[:5]
if not latest_songs:
logger.warning(f"No songs found for user {user.id}")
return recommender.get_popular_songs(limit)
# Get user's top genres
from .models import Song
top_genres = Song.objects.filter(user=user)\
.values('genre')\
.annotate(count=Count('id'))\
.order_by('-count')[:3]
# Get recommendations from multiple sources
all_recommendations = []
# 1. Content-based recommendations from recent songs
for song in latest_songs:
if song.spotify_id:
# Try to find similar songs - if the specific ID isn't in the dataset,
# the find_similar_songs method will try by name/artist
song_recommendations = recommender.find_similar_songs(song.spotify_id, n=20)
if song_recommendations:
for rec in song_recommendations:
rec['source'] = 'content_based'
all_recommendations.extend(song_recommendations)
# 2. Genre-based recommendations
for genre in top_genres:
if genre['genre'] and genre['genre'] != 'Unknown':
genre_recommendations = recommender.get_recommendations_by_genre(genre['genre'], n=10)
if genre_recommendations:
for rec in genre_recommendations:
rec['source'] = 'genre_based'
all_recommendations.extend(genre_recommendations)
# 3. Popular songs as fallback
if not all_recommendations:
popular_songs = recommender.get_popular_songs(limit)
for rec in popular_songs:
rec['source'] = 'popular'
return popular_songs
# Group by song title and count occurrences
recommendation_dict = {}
for rec in all_recommendations:
title = rec['title']
if title in recommendation_dict:
recommendation_dict[title]['count'] = recommendation_dict[title].get('count', 1) + 1
else:
rec['count'] = 1
recommendation_dict[title] = rec
# Convert back to list and sort by count and popularity
final_recommendations = list(recommendation_dict.values())
final_recommendations.sort(key=lambda x: (x.get('count', 0), x.get('popularity', 0)), reverse=True)
# Remove count field and source field and return top recommendations
for rec in final_recommendations:
if 'count' in rec:
del rec['count']
if 'source' in rec:
del rec['source']
return final_recommendations[:limit]
except Exception as e:
logger.error(f"Error in get_hybrid_recommendations: {e}", exc_info=True)
return get_hardcoded_recommendations(limit)
def update_user_recommendations(user):
"""
Update user's recommendations and store them
"""
try:
# Get recommendations using the hybrid recommender
recommendations = get_hybrid_recommendations(user)
if not recommendations:
return False
# We don't create Song objects for recommendations anymore
# Just update user's last recommendation time
if hasattr(user, 'music_profile'):
user.music_profile.last_recommendation_generated = datetime.now()
user.music_profile.save(update_fields=['last_recommendation_generated'])
logger.info(f"Got {len(recommendations)} recommendations for user {user.id}")
return recommendations
except Exception as e:
logger.error(f"Error updating recommendations: {e}")
return False |