File size: 5,369 Bytes
53c0cc8 6641fa8 53c0cc8 31b1b7e 53c0cc8 6d106b8 a12858e 53c0cc8 6641fa8 53c0cc8 6641fa8 31b1b7e 6641fa8 31b1b7e 6641fa8 31b1b7e 6641fa8 53c0cc8 c410e03 53c0cc8 c7100d5 49600c8 6641fa8 53c0cc8 49600c8 6641fa8 49600c8 c410e03 ceffe7d 49600c8 ceffe7d 53c0cc8 49600c8 ae4e744 49600c8 53c0cc8 49600c8 53c0cc8 ae4e744 c7100d5 53c0cc8 d77dd13 53c0cc8 3e9c92c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
from __future__ import annotations
import json
import shutil
import subprocess
import tempfile
from datetime import datetime, timedelta
from functools import lru_cache
from pathlib import Path
from huggingface_hub import hf_hub_download
import gradio as gr
from modular_graph_and_candidates import build_graph_json, generate_html, build_timeline_json, generate_timeline_html, filter_graph_by_threshold
def _escape_srcdoc(text: str) -> str:
"""Escape for inclusion inside an <iframe srcdoc="β¦"> attribute."""
return (
text.replace("&", "&")
.replace("\"", """)
.replace("'", "'")
.replace("<", "<")
.replace(">", ">")
)
HF_MAIN_REPO = "https://github.com/huggingface/transformers"
CACHE_REPO = "Molbap/hf_cached_embeds_log"
def _fetch_from_cache_repo(kind: str, sim_method: str, threshold: float, multimodal: bool):
repo_id = CACHE_REPO
latest_fp = hf_hub_download(repo_id=repo_id, filename="latest.json", repo_type="dataset")
info = json.loads(Path(latest_fp).read_text(encoding="utf-8"))
sha = info.get("sha")
key = f"{sha}/{sim_method}-m{int(multimodal)}"
json_fp = hf_hub_download(repo_id=repo_id, filename=f"{kind}/{key}.json", repo_type="dataset")
raw_data = json.loads(Path(json_fp).read_text(encoding="utf-8"))
filtered_data = filter_graph_by_threshold(raw_data, threshold)
if kind == "timeline":
from modular_graph_and_candidates import generate_timeline_html
raw_html = generate_timeline_html(filtered_data)
else:
raw_html = generate_html(filtered_data)
iframe_html = f'<iframe style="width:100%;height:85vh;border:none;" srcdoc="{_escape_srcdoc(raw_html)}"></iframe>'
tmp = Path(tempfile.mkstemp(suffix=("_timeline.json" if kind == "timeline" else ".json"))[1])
tmp.write_text(json.dumps(filtered_data), encoding="utf-8")
return iframe_html, str(tmp)
def run_loc(sim_method: str, multimodal: bool):
latest_fp = hf_hub_download(repo_id=CACHE_REPO, filename="latest.json", repo_type="dataset")
info = json.loads(Path(latest_fp).read_text(encoding="utf-8"))
sha = info["sha"]
key = f"{sha}/{sim_method}-m{int(multimodal)}"
html_fp = hf_hub_download(repo_id=CACHE_REPO, filename=f"loc/{key}.html", repo_type="dataset")
raw_html = Path(html_fp).read_text(encoding="utf-8")
iframe_html = f'<iframe style="width:100%;height:85vh;border:none;" srcdoc="{_escape_srcdoc(raw_html)}"></iframe>'
return iframe_html
def run_graph(repo_url: str, threshold: float, multimodal: bool, sim_method: str):
return _fetch_from_cache_repo("graph", sim_method, threshold, multimodal)
def run_timeline(repo_url: str, threshold: float, multimodal: bool, sim_method: str):
return _fetch_from_cache_repo("timeline", sim_method, threshold, multimodal)
# βββββββββββββββββββββββββββββ UI ββββββββββββββββββββββββββββββββββββββββββββββββ
CUSTOM_CSS = """
#graph_html iframe, #timeline_html iframe {height:85vh !important; width:100% !important; border:none;}
"""
with gr.Blocks(css=CUSTOM_CSS) as demo:
gr.Markdown("## π Modularβcandidate explorer for π€ Transformers")
with gr.Tabs():
with gr.Tab("Chronological Timeline"):
with gr.Row():
timeline_repo_in = gr.Text(value=HF_MAIN_REPO, label="Repo / fork URL")
timeline_thresh = gr.Slider(0.50, 0.95, value=0.5, step=0.01, label="Similarity β₯")
timeline_multi_cb = gr.Checkbox(label="Only multimodal models")
gr.Markdown("**Embedding method:** TBD")
timeline_btn = gr.Button("Build timeline")
timeline_html_out = gr.HTML(elem_id="timeline_html", show_label=False)
timeline_json_out = gr.File(label="Download timeline.json")
timeline_btn.click(lambda repo, thresh, multi: run_timeline(repo, thresh, multi, "jaccard"), [timeline_repo_in, timeline_thresh, timeline_multi_cb], [timeline_html_out, timeline_json_out])
with gr.Tab("LOC Growth"):
sim_radio2 = gr.Radio(["jaccard","embedding"], value="jaccard", label="Similarity metric")
multi_cb2 = gr.Checkbox(label="Only multimodal models")
go_loc = gr.Button("Show LOC growth")
loc_html = gr.HTML(show_label=False)
go_loc.click(run_loc, [sim_radio2, multi_cb2], loc_html)
with gr.Tab("Dependency Graph"):
with gr.Row():
repo_in = gr.Text(value=HF_MAIN_REPO, label="Repo / fork URL")
thresh = gr.Slider(0.50, 0.95, value=0.5, step=0.01, label="Similarity β₯")
multi_cb = gr.Checkbox(label="Only multimodal models")
gr.Markdown("**Embedding method:** TBD")
go_btn = gr.Button("Build graph")
graph_html_out = gr.HTML(elem_id="graph_html", show_label=False)
graph_json_out = gr.File(label="Download graph.json")
go_btn.click(lambda repo, thresh, multi: run_graph(repo, thresh, multi, "jaccard"), [repo_in, thresh, multi_cb], [graph_html_out, graph_json_out])
if __name__ == "__main__":
demo.launch(allowed_paths=["static"]) |