File size: 6,512 Bytes
bf18e69
bee2b96
631b794
bee2b96
 
 
 
7b54e65
bee2b96
 
 
 
 
bf18e69
4132a28
 
bf18e69
 
bee2b96
 
2cc1efc
 
e70a2d0
7b54e65
d187736
7b54e65
bf18e69
bee2b96
bf18e69
bee2b96
 
 
 
bf18e69
bee2b96
bf18e69
bee2b96
 
bf18e69
bee2b96
 
 
 
 
 
 
 
 
7b54e65
bee2b96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf18e69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bee2b96
 
bf18e69
 
bee2b96
bf18e69
bee2b96
 
bf18e69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30b68de
bf18e69
bee2b96
 
bf18e69
 
bee2b96
30b68de
bf18e69
 
 
 
 
 
 
 
 
 
 
 
 
bee2b96
bf18e69
39c89fc
30b68de
39c89fc
 
30b68de
39c89fc
 
bee2b96
e70a2d0
39c89fc
30b68de
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import gradio as gr
import os
import subprocess
import fitz
from dotenv import load_dotenv
from langchain_community.document_loaders import UnstructuredPDFLoader
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_text_splitters import CharacterTextSplitter
from langchain_groq import ChatGroq
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from gtts import gTTS
import sys
import pytesseract
from pdf2image import convert_from_path


# Load environment variables
load_dotenv()
secret_key = os.getenv("GROQ_API_KEY")

os.environ["GROQ_API_KEY"] = secret_key

embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2")

# Ensure the necessary folders exist
UPLOAD_FOLDER = 'uploads/'
AUDIO_FOLDER = 'audio/'
for folder in [UPLOAD_FOLDER, AUDIO_FOLDER]:
    if not os.path.exists(folder):
        os.makedirs(folder)


def load_pdf(file_path):
    """Load and preprocess Arabic text from a PDF file."""
    pages = convert_from_path(file_path, 500)
    documents = []
    for pageNum, imgBlob in enumerate(pages):
        text = pytesseract.image_to_string(imgBlob, lang="ara")
        documents.append(text)
    return documents

def prepare_vectorstore(data):
    text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=20, separator="\n")
    texts = data
    vectorstore = FAISS.from_texts(texts, embeddings)
    vectorstore.save_local("faiss_index")
    
    return vectorstore

def load_vectorstore():
    vectorstore = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
    return vectorstore

def create_chain(vectorstore):
    llm = ChatGroq(model="gemma2-9b-it", temperature=0)
    retriever = vectorstore.as_retriever()
    memory = ConversationBufferMemory(llm=llm, output_key="answer", memory_key="chat_history", return_messages=True)
    chain = ConversationalRetrievalChain.from_llm(
        llm=llm,
        retriever=retriever,
        memory=memory,
        verbose=False,
        chain_type="map_reduce"
    )
    return chain

def process_pdf(pdf_file):
    file_path = os.path.join(UPLOAD_FOLDER, pdf_file.name)
    with open(file_path, "wb") as f:
        f.write(pdf_file.read())
    data = load_pdf(file_path)
    vectorstore = prepare_vectorstore(data)
    return "PDF processed successfully. You can now start chatting!"

def chat(user_input, history):
    vectorstore = load_vectorstore()
    chain = create_chain(vectorstore)

    prompt = f"""
    You are an expert Arabic-language assistant specialized in analyzing and responding to queries about Arabic PDF documents. Your responses should be precise, informative, and reflect the professional tone and structure expected in formal Arabic communication. Focus on extracting and presenting relevant information from the document clearly and systematically, while avoiding colloquial or informal language.

    When responding, ensure the following:
       - Your answer directly reflects the content of the document.
       - If the requested information is not available in the document, clearly state that.
       - Keep your response concise yet comprehensive, addressing the question fully.
       - Always respond in formal Arabic, without using English.

    Question: {user_input}
    Helpful Answer:"""

    response = chain({"question": prompt})
    assistant_response = response["answer"]

    # Generate audio file
    tts = gTTS(text=assistant_response, lang='ar')
    audio_file = f"response_{len(history)}.mp3"
    tts.save(os.path.join(AUDIO_FOLDER, audio_file))

    return assistant_response, audio_file

custom_css = """
body {
    font-family: 'Noto Kufi Arabic', sans-serif;
    background: linear-gradient(135deg, #799351 0%, #A67B5B 100%);
    background-size: cover;
    background-position: center;
    background-attachment: fixed;
}

.gradio-container {
    max-width: 800px !important;
    margin: auto !important;
    background: rgba(255, 255, 255, 0.9);
    border-radius: 20px;
    box-shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37);
    backdrop-filter: blur(4px);
    border: 1px solid rgba(255, 255, 255, 0.18);
    padding: 20px;
}

h1, h2, h3 {
    color: #1A4D2E;
    font-weight: bold;
    text-align: center;
}

p {
    color: #A89F91;
}

.gradio-button {
    background-color: #5F6F65 !important;
    color: #FFFFFF !important;
}

.gradio-button:hover {
    background-color: #FFFFFF !important;
    color: #5F6F65 !important;
}

.chat-message {
    border-radius: 10px;
    padding: 10px;
    margin-bottom: 10px;
}

.chat-message.user {
    background-color: #E7F0DC;
}

.chat-message.bot {
    background-color: #F7EED3;
}

.chat-message::before {
    content: '';
    display: inline-block;
    width: 24px;
    height: 24px;
    background-size: contain;
    background-repeat: no-repeat;
    margin-right: 10px;
    vertical-align: middle;
}

.chat-message.user::before {
    content: '👤';
}

.chat-message.bot::before {
    content: '🤖';
}
"""
# Gradio interface
with gr.Blocks(css=custom_css) as demo:
    gr.Markdown("# ديمو بوت للقاء مركز حضرموت للدراسات التاريخية")
    gr.Markdown("## المنعقد السبت 14 - سبتمبر 2024")
    
    with gr.Row():
        pdf_input = gr.File(label="اختر ملف PDF للدردشة")
        process_button = gr.Button("رفع وبدء الدردشة")
    
    # Let Gradio manage the Textbox internally within ChatInterface
    chat_interface = gr.ChatInterface(
        chat,
        title="الدردشة مع البوت",
        description="اسأل أي سؤال عن محتوى الملف PDF",
        theme="soft",
        examples=["ما هو موضوع الوثيقة؟", "من هم الأشخاص المذكورون؟", "ما هي التواريخ الرئيسية المذكورة؟"],
        cache_examples=True,
        retry_btn=None,
        undo_btn="مسح آخر رسالة",
        clear_btn="مسح المحادثة",
    )

    audio_output = gr.Audio(label="الرد الصوتي")
    
    process_button.click(process_pdf, inputs=[pdf_input], outputs=[chat_interface.textbox])

    # Use the internal Textbox and Chatbot provided by the ChatInterface
    chat_interface.submit(
        fn=lambda x, y: y[-1][1],
        inputs=[chat_interface.textbox, chat_interface.chatbot],
        outputs=[audio_output]
    )

demo.launch()