File size: 5,523 Bytes
db3b173
 
 
33dc257
db3b173
 
33dc257
 
 
 
 
 
db3b173
33dc257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db3b173
33dc257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db3b173
 
33dc257
 
 
 
 
db3b173
 
33dc257
 
 
 
 
 
 
db3b173
 
33dc257
db3b173
33dc257
db3b173
 
33dc257
 
 
db3b173
 
33dc257
 
 
db3b173
 
33dc257
 
 
db3b173
 
33dc257
 
 
db3b173
 
33dc257
 
 
db3b173
 
33dc257
 
 
db3b173
 
33dc257
 
 
db3b173
 
33dc257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import random

import gradio as gr
import joblib
import numpy as np
import xgboost

model = joblib.load("xgb.pkl")


def predict(*args):
    input_data = []

    for i in args:
        input_data.append(float(i))

    input_data = np.asarray(input_data)
    # reshape the array as we are predicting for one instance
    input_data_reshaped = input_data.reshape(1, -1)

    prediction = model.predict(input_data_reshaped)

    if prediction[0] == 0:
        return "The Credit Score is Good"
    elif prediction[0] == 1:
        return "The Credit Score is Poor"
    else:
        return "The Credit Score is Standard"


with gr.Blocks() as app:
    gr.Markdown(
        """
    **Credit Score Classification**"""
    )
    with gr.Row():
        with gr.Column():
            Annual_Income = gr.TextArea(label="Annual Income")
            Monthly_Inhand_Salary = gr.TextArea(label="Monthly Inhand Salary")
            Interest_Rate = gr.TextArea(label="Interest Rate")
            Num_of_Loan = gr.Slider(
                label="Number of Loans", minimum=1, maximum=10, step=1, randomize=True
            )
            Delay_from_due_date = gr.Slider(
                label="Number of Delayed Days",
                minimum=-100,
                maximum=100,
                step=1,
                randomize=True,
            )
            Num_of_Delayed_Payment = gr.Slider(
                label="Number of Delayed Payments",
                minimum=1,
                maximum=10,
                step=1,
                randomize=True,
            )
            Credit_Mix = gr.Dropdown(
                label="Credit Mix (Bad: 0, Don't Have: 1, Good: 2, Standard: 3)",
                choices=[0, 1, 2, 3],
                value=lambda: random.choice([0, 1, 2, 3]),
            )
            Outstanding_Debt = gr.TextArea(label="Outstanding Debt")
            Credit_Utilization_Ratio = gr.TextArea(label="Credit Utilization Ratio")
            Payment_of_Min_Amount = gr.Dropdown(
                label="Payment of Minimum Amount (NM: 0, No: 1, Yes: 2)",
                choices=[0, 1, 2],
                value=lambda: random.choice([0, 1, 2]),
            )
            Total_EMI_per_month = gr.TextArea(label="Total Equated Monthly Installment")
            Amount_invested_monthly = gr.TextArea(label="Amount Invested Monthly")
            Monthly_Balance = gr.TextArea(label="Monthly Balance")
            Credit_History_Age_In_Years = gr.TextArea(label="Credit History in Years")
            StudentLoan = gr.Dropdown(
                label="Student Loan (Don't Have: 0, Have: 1)",
                choices=[0, 1],
                value=lambda: random.choice([0, 1]),
            )
            MortgageLoan = gr.Dropdown(
                label="Mortage Loan (Don't Have: 0, Have: 1)",
                choices=[0, 1],
                value=lambda: random.choice([0, 1]),
            )
            PersonalLoan = gr.Dropdown(
                label="Personal Loan (Don't Have: 0, Have: 1)",
                choices=[0, 1],
                value=lambda: random.choice([0, 1]),
            )
            DebtConsolidationLoan = gr.Dropdown(
                label="Debt Consolidation Loan (Don't Have: 0, Have: 1)",
                choices=[0, 1],
                value=lambda: random.choice([0, 1]),
            )
            Credit_BuilderLoan = gr.Dropdown(
                label="Credit Builder Loan (Don't Have: 0, Have: 1)",
                choices=[0, 1],
                value=lambda: random.choice([0, 1]),
            )
            HomeEquityLoan = gr.Dropdown(
                label="Home Equity Loan (Don't Have: 0, Have: 1)",
                choices=[0, 1],
                value=lambda: random.choice([0, 1]),
            )
            NotSpecified = gr.Dropdown(
                label="Unspecified Loan (Don't Have: 0, Have: 1)",
                choices=[0, 1],
                value=lambda: random.choice([0, 1]),
            )
            AutoLoan = gr.Dropdown(
                label="Auto Loan (Don't Have: 0, Have: 1)",
                choices=[0, 1],
                value=lambda: random.choice([0, 1]),
            )
            PaydayLoan = gr.Dropdown(
                label="Payday Loan (Don't Have: 0, Have: 1)",
                choices=[0, 1],
                value=lambda: random.choice([0, 1]),
            )
        with gr.Column():
            label = gr.Label()
            with gr.Row():
                predict_btn = gr.Button(value="Predict")
            predict_btn.click(
                predict,
                inputs=[
                    Annual_Income,
                    Monthly_Inhand_Salary,
                    Interest_Rate,
                    Num_of_Loan,
                    Delay_from_due_date,
                    Num_of_Delayed_Payment,
                    Credit_Mix,
                    Outstanding_Debt,
                    Credit_Utilization_Ratio,
                    Payment_of_Min_Amount,
                    Total_EMI_per_month,
                    Amount_invested_monthly,
                    Monthly_Balance,
                    Credit_History_Age_In_Years,
                    StudentLoan,
                    MortgageLoan,
                    PersonalLoan,
                    DebtConsolidationLoan,
                    Credit_BuilderLoan,
                    HomeEquityLoan,
                    NotSpecified,
                    AutoLoan,
                    PaydayLoan,
                ],
                outputs=[label],
            )

app.launch()