File size: 6,425 Bytes
32287b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import gc
import os
import subprocess
import time
import re
from typing import List, Optional, Tuple

import torch
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP

import glob
import shutil
from infinity.utils import arg_util
import infinity.utils.dist as dist


def glob_with_epoch_iter(pattern, recursive=False): 
    def extract_ep_iter(filename):
        match = re.search(r'ep(\d+)-iter(\d+)', filename)
        if match:
            ep = int(match.group(1))
            iter_idx = int(match.group(2))
            return ep, iter_idx
        return 0, 0
    return sorted(glob.glob(pattern, recursive=recursive), key=lambda x: extract_ep_iter(os.path.basename(x)), reverse=True)


def glob_with_global_step(pattern, recursive=False): 
    def extract_ep_iter(filename):
        match = re.search(r'global_step_(\d+)', filename)
        if match:
            iter_idx = int(match.group(1))
            return iter_idx
        return 0
    return sorted(glob.glob(pattern, recursive=recursive), key=lambda x: extract_ep_iter(os.path.basename(x)), reverse=True)
        

class CKPTSaver(object):
    def __init__(self, is_master: bool, eval_milestone: List[Tuple[float, float]]):
        self.is_master = is_master
        self.time_stamp = torch.tensor([time.time() - 1e5, time.time()], device=dist.get_device())
        self.sp_also: subprocess.Popen = None
        self.sp_best: subprocess.Popen = None
        self.sp_backup: subprocess.Popen = None
        self.acc_str, self.eval_milestone = '[no acc str]', eval_milestone
    
    def sav(
        self, args: arg_util.Args, g_it: int, next_ep: int, next_it: int, trainer,
        acc_str: Optional[str] = None, eval_milestone: Optional[List[Tuple[float, float]]] = None,
        also_save_to: str = None, best_save_to: str = None,
    ):
        self.time_stamp[1] = time.time()
        dist.broadcast(self.time_stamp, src_rank=0)
        last_save_time, cur_time = self.time_stamp.cpu().tolist()
        
        auto_save = cur_time - last_save_time > 20 * 60
        need_save = also_save_to is not None or best_save_to is not None or next_ep == args.ep or auto_save
        if not need_save:
            return
        
        if acc_str is not None: self.acc_str = acc_str
        if eval_milestone is not None: self.eval_milestone = eval_milestone
        
        fname = f'ar-ckpt-giter{g_it//1000:03d}K-ep{next_ep}-iter{next_it}-last.pth' if args.gpt_training else f'ckpt-last.pth'
        local_out_ckpt = os.path.join(args.local_out_path, fname)
        
        # NOTE: all rank should call this state_dict(), not master only!
        trainer_state = trainer.state_dict()
        
        if self.is_master:
            stt = time.time()
            torch.save({
                'args':         args.state_dict(),
                'gpt_training': args.gpt_training,
                'arch':         args.model if args.gpt_training else args.vv,
                'epoch':        next_ep,
                'iter':         next_it,
                'trainer':      trainer_state,
                'acc_str':      self.acc_str,
                'milestones':   self.eval_milestone,
            }, local_out_ckpt)
            
            print(f'[CKPTSaver][rank00] start: {also_save_to=} {best_save_to=} {(next_ep == args.ep)=} {auto_save=}  |  see {local_out_ckpt}', flush=True)
            print(f'[CKPTSaver][rank00] dbg: {args.bed=}', flush=True)                
            if auto_save:
                if self.sp_backup is not None:
                    self.sp_backup.wait(timeout=300); self.sp_backup.kill(); self.sp_backup.communicate()
                self.time_stamp[0] = time.time()

                def auto_sync(source_filename, target_filename):
                    cmd = f'cp -r {source_filename} {target_filename}'
                    self.sp_backup = subprocess.Popen(cmd, shell=True, bufsize=-1)
                    print(f'[CKPTSaver] auto_save cmd: {cmd}', flush=True)

                local_files = glob.glob(f"{args.local_out_path}/*")
                for filename in local_files:
                    basename = os.path.basename(filename)
                    target_filename = f'{args.bed}/{basename}'
                    if basename.endswith('.pth'):
                        if not os.path.isfile(target_filename):
                            auto_sync(filename, target_filename)
                    else:
                        auto_sync(filename, target_filename)                    
            cost = time.time() - stt
            print(f'[CKPTSaver][rank00] cost: {cost:.2f}s', flush=True)
        
        del trainer_state
        time.sleep(3), gc.collect(), torch.cuda.empty_cache(), time.sleep(3)
        dist.barrier()
        

def auto_resume(args: arg_util.Args, pattern='ckpt*.pth') -> Tuple[List[str], int, int, str, List[Tuple[float, float]], dict, dict]:
    info = []
    resume = ''
    if args.auto_resume:
        for dd in (args.local_out_path, args.bed):
            all_ckpt = glob_with_epoch_iter(os.path.join(dd, pattern))
            if len(all_ckpt): break
        if len(all_ckpt) == 0:
            info.append(f'[auto_resume] no ckpt found @ {pattern}')
            info.append(f'[auto_resume quit]')
        else:
            resume = all_ckpt[0]
            info.append(f'[auto_resume] auto load from @ {resume} ...')
    else:
        info.append(f'[auto_resume] disabled')
        info.append(f'[auto_resume quit]')
    
    if len(resume) == 0:
        return info, 0, 0, '[no acc str]', [], {}, {}

    print(f'auto resume from {resume}')

    try:
        ckpt = torch.load(resume, map_location='cpu')
    except Exception as e:
        info.append(f'[auto_resume] failed, {e} @ {resume}')
        if len(all_ckpt) < 2:
            return info, 0, 0, '[no acc str]', [], {}, {}
        try: # another chance to load from bytenas
            ckpt = torch.load(all_ckpt[1], map_location='cpu')
        except Exception as e:
            info.append(f'[auto_resume] failed, {e} @ {all_ckpt[1]}')
            return info, 0, 0, '[no acc str]', [], {}, {}
    
    dist.barrier()
    ep, it = ckpt['epoch'], ckpt['iter']
    eval_milestone = ckpt.get('milestones', [])
    info.append(f'[auto_resume success] resume from ep{ep}, it{it},    eval_milestone: {eval_milestone}')
    return info, ep, it, ckpt.get('acc_str', '[no acc str]'), eval_milestone, ckpt['trainer'], ckpt['args']