File size: 14,676 Bytes
ee16852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List
import requests
from bs4 import BeautifulSoup
import time
import os
import json
import random
import logging
import groq
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
import uvicorn
from supabase import create_client, Client
from urllib.parse import urljoin, urlparse


# Initialize FastAPI app
app = FastAPI(
    title="Web RAG System API",
    description="Extract content from web pages and perform RAG operations",
    version="1.0.0"
)

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Initialize Supabase client with environment variables
try:
    url = os.environ.get('SUPABASE_URL')
    key = os.environ.get('SUPABASE_SERVICE_ROLE_KEY')
    
    if not url or not key:
        logger.warning("Supabase credentials not found in environment variables")
        supabase = None
    else:
        supabase: Client = create_client(url, key)
        logger.info("Supabase client initialized successfully")
except Exception as e:
    logger.error(f"Failed to initialize Supabase client: {e}")
    supabase = None

# User agents for web scraping
user_agents = [
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Firefox/102.0",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/15.5 Safari/605.1.15",
    "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:102.0) Gecko/20100101 Firefox/102.0",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:102.0) Gecko/20100101 Firefox/102.0",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/103.0.0.0 Safari/537.36",
    "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/103.0.0.0 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/103.0.1264.49",
    "Mozilla/5.0 (iPhone; CPU iPhone OS 15_5 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/15.5 Mobile/15E148 Safari/604.1",
    "Mozilla/5.0 (iPad; CPU OS 15_5 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/15.5 Mobile/15E148 Safari/604.1",
    "Mozilla/5.0 (Linux; Android 12; SM-G991B) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/103.0.0.0 Mobile Safari/537.36",
    "Mozilla/5.0 (Linux; Android 11; Pixel 5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/103.0.0.0 Mobile Safari/537.36",
    "Mozilla/5.0 (Linux; Android 11; SM-A217F) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/103.0.0.0 Mobile Safari/537.36",
    "Mozilla/5.0 (Linux; Android 10; SM-G975F) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/103.0.0.0 Mobile Safari/537.36"
]

# Pydantic models
class RAGRequest(BaseModel):
    file_path: str
    prompt: str

class URL(BaseModel):
    url: str

@app.get("/")
async def root():
    """Health check endpoint"""
    return {"message": "Web RAG System API is running", "status": "healthy"}

@app.get("/health")
async def health_check():
    """Detailed health check"""
    health_status = {
        "api": "healthy",
        "supabase": "connected" if supabase else "not configured",
        "hf_token": "configured" if os.environ.get('hf_token') else "not configured",
        "groq_token": "configured" if os.environ.get('groq_token') else "not configured"
    }
    return health_status

@app.post("/rag")
async def rag(request: RAGRequest):
    """Perform RAG operations on extracted text"""
    try:
        # Check required environment variables
        hf_token = os.environ.get('hf_token')
        groq_token = os.environ.get('groq_token')
        
        if not hf_token:
            raise HTTPException(status_code=500, detail="HuggingFace token not configured")
        if not groq_token:
            raise HTTPException(status_code=500, detail="Groq token not configured")
        if not supabase:
            raise HTTPException(status_code=500, detail="Supabase not configured")
        
        logger.info(f"Processing RAG request for file: {request.file_path}")
        
        # HuggingFace Inference API for embeddings
        API_URL = "https://router.huggingface.co/hf-inference/models/BAAI/bge-large-en-v1.5/pipeline/feature-extraction"
        headers = {
            "Authorization": hf_token,  
        }
        
        def query(payload):
            response = requests.post(API_URL, headers=headers, json=payload)
            if response.status_code != 200:
                logger.error(f"HuggingFace API error: {response.status_code} - {response.text}")
                raise HTTPException(status_code=500, detail="Failed to get embeddings from HuggingFace")
            return response.json()
        
        # Create a Groq client
        groq_client = groq.Client(api_key=groq_token)
        
        def process_with_groq(query_text, context):
            prompt = f"""
            Context information:
            {context}
            
            Based on the context information above, please answer the following question:
            {query_text}
            
            Answer:
            """
            
            try:
                response = groq_client.chat.completions.create(
                    messages=[{"role": "user", "content": prompt}],
                    model="llama-3.3-70b-versatile",
                    temperature=0.4,
                    max_tokens=512
                )
                return response.choices[0].message.content
            except Exception as e:
                logger.error(f"Groq API error: {e}")
                raise HTTPException(status_code=500, detail="Failed to process with Groq")
        
        def get_file_from_supabase(bucket_name, file_path):
            try:
                response = supabase.storage.from_(bucket_name).download(file_path)
                content = response.decode('utf-8')
                return content
            except Exception as e:
                logger.error(f"Error downloading file from Supabase: {e}")
                raise HTTPException(
                    status_code=404, 
                    detail=f"File not found in Supabase bucket: {file_path}"
                )
        
        # Get file content from Supabase
        bucket_name = "url-2-ans-bucket"
        file_path = request.file_path
        
        content = get_file_from_supabase(bucket_name, file_path)
        logger.info(f"Successfully downloaded file from Supabase: {file_path}")
        
        # Simple text chunking
        chunk_size = 1000
        overlap = 200
        chunks = []
        
        for i in range(0, len(content), chunk_size - overlap):
            chunk = content[i:i + chunk_size]
            if len(chunk) > 100:
                chunks.append({"text": chunk, "position": i})
        
        logger.info(f"Created {len(chunks)} chunks from document")
        
        # Get embeddings for all chunks
        chunk_embeddings = []
        for chunk in chunks:
            embedding = query({"inputs": chunk["text"]})
            chunk_embeddings.append(embedding)
        
        # Get embedding for the query
        query_embedding = query({"inputs": request.prompt})
        
        # Calculate similarity between query and all chunks
        similarities = []
        for chunk_embedding in chunk_embeddings:
            query_np = np.array(query_embedding)
            chunk_np = np.array(chunk_embedding)
            
            if len(query_np.shape) == 1:
                query_np = query_np.reshape(1, -1)
            if len(chunk_np.shape) == 1:
                chunk_np = chunk_np.reshape(1, -1)
                
            similarity = cosine_similarity(query_np, chunk_np)[0][0]
            similarities.append(similarity)
        
        # Get top 3 most similar chunks
        top_k = 3
        top_indices = np.argsort(similarities)[-top_k:][::-1]
        
        relevant_chunks = [chunks[i]["text"] for i in top_indices]
        context_text = "\n\n".join(relevant_chunks)
        
        # Process with Groq
        answer = process_with_groq(request.prompt, context_text)
        
        # Prepare sources
        sources = [{"text": chunks[i]["text"][:200] + "...", "position": chunks[i]["position"]} 
                  for i in top_indices]
        
        return {
            "sources": sources,
            "user_query": request.prompt,
            "assistant_response": answer,
            "file_source": f"supabase://{bucket_name}/{file_path}"
        }
        
    except HTTPException:
        raise
    except Exception as e:
        logger.exception("Error occurred in RAG process")
        raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")

@app.post("/extract_links")
async def extract_links(url: URL):
    """Extract unique links from a given URL"""
    def extract_unique_links(url_string, max_retries=3, timeout=30):
        for attempt in range(max_retries):
            try:
                headers = {'User-Agent': random.choice(user_agents)}
                response = requests.get(url_string, headers=headers, timeout=timeout)
                response.raise_for_status()
                soup = BeautifulSoup(response.text, 'html.parser')
                
                base_url = urlparse(url_string)
                base_url = f"{base_url.scheme}://{base_url.netloc}"
                
                a_tags = soup.find_all('a', href=True)
                links = []
                for a in a_tags:
                    href = a.get('href')
                    full_url = urljoin(base_url, href)
                    links.append(full_url)
                
                unique_links = list(dict.fromkeys(links))
                unique_links.insert(0, url_string)
                return unique_links
            
            except requests.RequestException as e:
                logger.warning(f"Attempt {attempt + 1} failed: {e}")
                if attempt < max_retries - 1:
                    wait_time = 5 * (attempt + 1)
                    time.sleep(wait_time)
                else:
                    logger.error(f"Failed to retrieve {url_string} after {max_retries} attempts.")
                    raise HTTPException(status_code=500, detail=f"Failed to retrieve {url_string} after {max_retries} attempts.")
        return []
    
    try:
        unique_links = extract_unique_links(url.url)
        return {"unique_links": unique_links}
    except Exception as e:
        logger.exception("Error in extract_links")
        raise HTTPException(status_code=500, detail=f"Failed to extract links: {str(e)}")

@app.post("/extract_text")
async def extract_text(urls: List[str]):
    """Extract text content from multiple URLs"""
    if not supabase:
        raise HTTPException(status_code=500, detail="Supabase not configured")
    
    output_file = "extracted_text.txt"
    
    def upload_text_content(filename, content, bucket_name):
        try:
            file_content = content.encode('utf-8')
            
            # Try to upload first
            try:
                response = supabase.storage.from_(bucket_name).upload(
                    path=filename,
                    file=file_content,
                    file_options={"content-type": "text/plain"}
                )
                logger.info(f"Text file uploaded successfully: {filename}")
                return response
            except Exception as upload_error:
                # If upload fails (file exists), try to update
                try:
                    response = supabase.storage.from_(bucket_name).update(
                        path=filename,
                        file=file_content,
                        file_options={"content-type": "text/plain"}
                    )
                    logger.info(f"Text file updated successfully: {filename}")
                    return response
                except Exception as update_error:
                    logger.error(f"Error updating text content: {update_error}")
                    raise HTTPException(status_code=500, detail="Failed to save file to storage")
                    
        except Exception as e:
            logger.error(f"Error with file operations: {e}")
            raise HTTPException(status_code=500, detail="Failed to save file to storage")
    
    def text_data_extractor(links):
        extracted_texts = []
        
        for link in links:
            parsed_url = urlparse(link)
            if not parsed_url.scheme:
                logger.warning(f"Invalid URL: {link}")
                continue

            retries = 3
            while retries > 0:
                try:
                    headers = {'User-Agent': random.choice(user_agents)}
                    response = requests.get(link, headers=headers, timeout=30)
                    response.raise_for_status()
                    soup = BeautifulSoup(response.text, 'html.parser')
                    text = soup.get_text()
                    clean_text = ' '.join(text.split())
                    extracted_texts.append({"url": link, "text": clean_text})
                    break
                    
                except requests.RequestException as e:
                    retries -= 1
                    logger.warning(f"Retry {3 - retries} for {link} failed: {e}")
                    if retries > 0:
                        wait_time = 5 * (3 - retries)
                        time.sleep(wait_time)
                
            if retries == 0:
                extracted_texts.append({
                    "url": link, 
                    "text": "Failed to retrieve text after multiple attempts."
                })
        
        return extracted_texts
    
    try:
        extracted_data = text_data_extractor(urls)
        string_output = json.dumps(extracted_data, ensure_ascii=False, indent=2)
        
        # Upload to Supabase
        upload_text_content(output_file, string_output, "url-2-ans-bucket")
        
        return {"extracted_data": extracted_data, "file_saved": output_file}
        
    except Exception as e:
        logger.exception("Error in extract_text")
        raise HTTPException(status_code=500, detail=f"Failed to extract text: {str(e)}")

# Main execution
if __name__ == "__main__":
    # Run the FastAPI app
    uvicorn.run(
        "main_api:app", 
        host="0.0.0.0", 
        port=8000, 
        reload=False,  # Disable reload for production
        access_log=True
    )