File size: 6,267 Bytes
8ad08ed
 
 
 
 
 
 
 
 
 
 
aa315a3
8ad08ed
 
 
aa315a3
 
8ad08ed
 
 
2bfe6e5
8ad08ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa315a3
8ad08ed
 
 
 
 
 
 
2bfe6e5
8ad08ed
 
 
 
 
 
 
 
2bfe6e5
161521f
 
 
 
 
 
 
 
 
 
8ad08ed
161521f
8ad08ed
 
 
 
 
 
 
2bfe6e5
161521f
2bfe6e5
8ad08ed
161521f
8ad08ed
 
 
 
 
 
 
 
 
aa315a3
 
 
 
 
 
 
 
 
 
 
 
 
 
8ad08ed
 
 
 
 
 
 
 
 
 
 
 
aa315a3
8ad08ed
 
 
 
 
 
aa315a3
8ad08ed
 
 
 
 
aa315a3
8ad08ed
 
 
 
 
aa315a3
 
 
 
 
 
8ad08ed
 
 
aa315a3
 
 
 
 
 
 
 
 
 
8ad08ed
 
 
 
 
aa315a3
 
 
 
 
 
8ad08ed
2bfe6e5
aa315a3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#!/usr/bin/env python3
"""
Compatibility shim: CoreVideoProcessor

Bridges the legacy import `from processing.video.video_processor import CoreVideoProcessor`
to the modern pipeline functions living in `utils.cv_processing` and models in `core.models`.
"""

from __future__ import annotations

from dataclasses import dataclass
from typing import Optional, Dict, Any, Tuple, Callable

import cv2
import numpy as np
import time
import threading

from utils.logger import get_logger
from core.models import ModelManager

# ← these funcs are the ones you showed (in utils/cv_processing.py)
from utils.cv_processing import (
    segment_person_hq,
    refine_mask_hq,
    replace_background_hq,
    create_professional_background,
    validate_video_file,
)

@dataclass
class ProcessorConfig:
    background_preset: str = "minimalist"   # key in PROFESSIONAL_BACKGROUNDS
    write_fps: Optional[float] = None       # None -> keep source fps

class CoreVideoProcessor:
    """
    Minimal, safe implementation used by core/app.py.
    It relies on ModelManager (SAM2 + MatAnyone) and your cv_processing helpers.
    Now supports live progress + cancel/stop.
    """

    def __init__(self, config: Optional[ProcessorConfig] = None, models: Optional[ModelManager] = None):
        self.log = get_logger(f"{__name__}.CoreVideoProcessor")
        self.config = config or ProcessorConfig()
        self.models = models or ModelManager()
        try:
            self.models.load_all()
        except Exception as e:
            self.log.warning(f"Model load issue (will use fallbacks if needed): {e}")

    # --- single-frame API (useful for images or per-frame video loop) ---
    def process_frame(self, frame: np.ndarray, background: np.ndarray) -> Dict[str, Any]:
        """Return dict with composited frame + mask; always succeeds with fallbacks."""
        predictor = None
        try:
            sam2_model = self.models.get_sam2()
            if sam2_model is not None:
                if hasattr(sam2_model, 'predictor'):
                    predictor = sam2_model.predictor
                elif hasattr(sam2_model, 'set_image'):
                    predictor = sam2_model
                elif isinstance(sam2_model, dict) and 'model' in sam2_model:
                    self.log.warning("SAM2 loaded as dict format, not directly usable")
                    predictor = None
            if predictor is None:
                self.log.debug("SAM2 predictor not available, will use fallback")
        except Exception as e:
            self.log.warning(f"SAM2 predictor unavailable: {e}")

        # 1) segment
        mask = segment_person_hq(frame, predictor, fallback_enabled=True)

        # 2) refine
        matanyone = None
        try:
            matanyone_model = self.models.get_matanyone()
            if matanyone_model is not None:
                matanyone = matanyone_model
        except Exception as e:
            self.log.warning(f"MatAnyone unavailable: {e}")

        mask_refined = refine_mask_hq(frame, mask, matanyone, fallback_enabled=True)

        # 3) composite
        out = replace_background_hq(frame, mask_refined, background, fallback_enabled=True)

        return {"frame": out, "mask": mask_refined}

    # --- simple video API (covers typical usage in older core/app.py code) ---
    def process_video(
        self,
        input_path: str,
        output_path: str,
        bg_config: Optional[Dict[str, Any]] = None,
        progress_callback: Optional[Callable[[int, int, float], None]] = None,  # <-- ADDED
        stop_event: Optional[threading.Event] = None   # <-- ADDED
    ) -> Dict[str, Any]:
        """
        Process a full video with live progress and optional stop.
        progress_callback: function(current_frame, total_frames, fps)
        stop_event: threading.Event() - if set(), abort processing.
        Returns: dict with stats.
        """
        ok, msg = validate_video_file(input_path)
        if not ok:
            raise ValueError(f"Invalid video: {msg}")
        self.log.info(f"Video validation: {msg}")

        cap = cv2.VideoCapture(input_path)
        if not cap.isOpened():
            raise RuntimeError(f"Could not open video: {input_path}")

        width  = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps    = cap.get(cv2.CAP_PROP_FPS)
        total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        fps_out = self.config.write_fps or (fps if fps and fps > 0 else 25.0)

        fourcc = cv2.VideoWriter_fourcc(*"mp4v")
        writer = cv2.VideoWriter(output_path, fourcc, fps_out, (width, height))

        # Build background (once)
        from utils.cv_processing import PROFESSIONAL_BACKGROUNDS
        preset = self.config.background_preset
        cfg = bg_config or PROFESSIONAL_BACKGROUNDS.get(preset, PROFESSIONAL_BACKGROUNDS["minimalist"])
        background = create_professional_background(cfg, width, height)

        frame_count = 0
        start_time = time.time()
        try:
            while True:
                ret, frame = cap.read()
                if not ret:
                    break

                # --- CANCEL SUPPORT ---
                if stop_event is not None and stop_event.is_set():
                    self.log.info("Processing stopped by user request")  # <-- CHANGED
                    break

                res = self.process_frame(frame, background)
                writer.write(res["frame"])
                frame_count += 1

                # --- LIVE PROGRESS ---
                if progress_callback:
                    elapsed = time.time() - start_time
                    fps_live = frame_count / elapsed if elapsed > 0 else 0
                    progress_callback(
                        frame_count,
                        total_frames,
                        fps_live
                    )
        finally:
            cap.release()
            writer.release()

        self.log.info(f"Processed {frame_count} frames → {output_path}")
        return {
            "frames": frame_count,
            "width": width,
            "height": height,
            "fps_out": fps_out
        }

# Backward-compat export name
VideoProcessor = CoreVideoProcessor