File size: 48,604 Bytes
26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 c0e3d96 26841b5 9f4df99 c0e3d96 26841b5 9f4df99 26841b5 c0e3d96 9f4df99 c0e3d96 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 c0e3d96 26841b5 9f4df99 c0e3d96 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 c0e3d96 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 7277e52 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 c0e3d96 9f4df99 c0e3d96 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 c0e3d96 9f4df99 c0e3d96 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 c0e3d96 26841b5 c0e3d96 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 9f4df99 26841b5 7277e52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 |
"""
Computer Vision Processing Module for BackgroundFX Pro
Contains segmentation, mask refinement, background replacement, and helper functions
"""
# Set OMP_NUM_THREADS at the very beginning to prevent libgomp errors
import os
if 'OMP_NUM_THREADS' not in os.environ:
os.environ['OMP_NUM_THREADS'] = '4'
os.environ['MKL_NUM_THREADS'] = '4'
import logging
from typing import Optional, Tuple, Dict, Any
import numpy as np
import cv2
import torch
logger = logging.getLogger(__name__)
# ============================================================================
# CONFIGURATION AND CONSTANTS
# ============================================================================
# Version control flags for CV functions
USE_ENHANCED_SEGMENTATION = True
USE_AUTO_TEMPORAL_CONSISTENCY = True
USE_INTELLIGENT_PROMPTING = True
USE_ITERATIVE_REFINEMENT = True
# Professional background templates
PROFESSIONAL_BACKGROUNDS = {
"office_modern": {
"name": "Modern Office",
"type": "gradient",
"colors": ["#f8f9fa", "#e9ecef", "#dee2e6"],
"direction": "diagonal",
"description": "Clean, contemporary office environment",
"brightness": 0.95,
"contrast": 1.1
},
"studio_blue": {
"name": "Professional Blue",
"type": "gradient",
"colors": ["#1e3c72", "#2a5298", "#3498db"],
"direction": "radial",
"description": "Broadcast-quality blue studio",
"brightness": 0.9,
"contrast": 1.2
},
"studio_green": {
"name": "Broadcast Green",
"type": "color",
"colors": ["#00b894"],
"chroma_key": True,
"description": "Professional green screen replacement",
"brightness": 1.0,
"contrast": 1.0
},
"minimalist": {
"name": "Minimalist White",
"type": "gradient",
"colors": ["#ffffff", "#f1f2f6", "#ddd"],
"direction": "soft_radial",
"description": "Clean, minimal background",
"brightness": 0.98,
"contrast": 0.9
},
"warm_gradient": {
"name": "Warm Sunset",
"type": "gradient",
"colors": ["#ff7675", "#fd79a8", "#fdcb6e"],
"direction": "diagonal",
"description": "Warm, inviting atmosphere",
"brightness": 0.85,
"contrast": 1.15
},
"tech_dark": {
"name": "Tech Dark",
"type": "gradient",
"colors": ["#0c0c0c", "#2d3748", "#4a5568"],
"direction": "vertical",
"description": "Modern tech/gaming setup",
"brightness": 0.7,
"contrast": 1.3
}
}
# ============================================================================
# CUSTOM EXCEPTIONS
# ============================================================================
class SegmentationError(Exception):
"""Custom exception for segmentation failures"""
pass
class MaskRefinementError(Exception):
"""Custom exception for mask refinement failures"""
pass
class BackgroundReplacementError(Exception):
"""Custom exception for background replacement failures"""
pass
# ============================================================================
# MAIN SEGMENTATION FUNCTIONS
# ============================================================================
def segment_person_hq(image: np.ndarray, predictor: Any, fallback_enabled: bool = True) -> np.ndarray:
"""High-quality person segmentation with intelligent automation"""
if not USE_ENHANCED_SEGMENTATION:
return segment_person_hq_original(image, predictor, fallback_enabled)
logger.debug("Using ENHANCED segmentation with intelligent automation")
if image is None or image.size == 0:
raise SegmentationError("Invalid input image")
try:
# SAFE PREDICTOR CHECK - Added comprehensive validation
if predictor is None:
if fallback_enabled:
logger.warning("SAM2 predictor not available, using fallback")
return _fallback_segmentation(image)
else:
raise SegmentationError("SAM2 predictor not available")
# Check if predictor has required methods
if not hasattr(predictor, 'set_image') or not hasattr(predictor, 'predict'):
logger.warning("Predictor missing required methods, using fallback")
if fallback_enabled:
return _fallback_segmentation(image)
else:
raise SegmentationError("Invalid predictor object")
# Safe set_image call
try:
predictor.set_image(image)
except Exception as e:
logger.error(f"Failed to set image in predictor: {e}")
if fallback_enabled:
return _fallback_segmentation(image)
else:
raise SegmentationError(f"Predictor setup failed: {e}")
if USE_INTELLIGENT_PROMPTING:
mask = _segment_with_intelligent_prompts(image, predictor, fallback_enabled)
else:
mask = _segment_with_basic_prompts(image, predictor, fallback_enabled)
if USE_ITERATIVE_REFINEMENT and mask is not None:
mask = _auto_refine_mask_iteratively(image, mask, predictor)
if not _validate_mask_quality(mask, image.shape[:2]):
logger.warning("Mask quality validation failed")
if fallback_enabled:
return _fallback_segmentation(image)
else:
raise SegmentationError("Poor mask quality")
logger.debug(f"Enhanced segmentation successful - mask range: {mask.min()}-{mask.max()}")
return mask
except SegmentationError:
raise
except Exception as e:
logger.error(f"Unexpected segmentation error: {e}")
if fallback_enabled:
return _fallback_segmentation(image)
else:
raise SegmentationError(f"Unexpected error: {e}")
def segment_person_hq_original(image: np.ndarray, predictor: Any, fallback_enabled: bool = True) -> np.ndarray:
"""Original version of person segmentation for rollback"""
if image is None or image.size == 0:
raise SegmentationError("Invalid input image")
try:
# SAFE PREDICTOR CHECK - Added comprehensive validation
if predictor is None:
if fallback_enabled:
logger.warning("SAM2 predictor not available, using fallback")
return _fallback_segmentation(image)
else:
raise SegmentationError("SAM2 predictor not available")
# Check if predictor has required methods
if not hasattr(predictor, 'set_image') or not hasattr(predictor, 'predict'):
logger.warning("Predictor missing required methods, using fallback")
if fallback_enabled:
return _fallback_segmentation(image)
else:
raise SegmentationError("Invalid predictor object")
# Safe set_image call
try:
predictor.set_image(image)
except Exception as e:
logger.error(f"Failed to set image in predictor: {e}")
if fallback_enabled:
return _fallback_segmentation(image)
else:
raise SegmentationError(f"Predictor setup failed: {e}")
h, w = image.shape[:2]
points = np.array([
[w//2, h//4],
[w//2, h//2],
[w//2, 3*h//4],
[w//3, h//2],
[2*w//3, h//2],
[w//2, h//6],
[w//4, 2*h//3],
[3*w//4, 2*h//3],
], dtype=np.float32)
labels = np.ones(len(points), dtype=np.int32)
# Safe prediction with error handling
try:
with torch.no_grad():
masks, scores, _ = predictor.predict(
point_coords=points,
point_labels=labels,
multimask_output=True
)
except Exception as e:
logger.error(f"SAM2 prediction failed: {e}")
if fallback_enabled:
return _fallback_segmentation(image)
else:
raise SegmentationError(f"Prediction failed: {e}")
if masks is None or len(masks) == 0:
logger.warning("SAM2 returned no masks")
if fallback_enabled:
return _fallback_segmentation(image)
else:
raise SegmentationError("No masks generated")
if scores is None or len(scores) == 0:
logger.warning("SAM2 returned no scores")
best_mask = masks[0]
else:
best_idx = np.argmax(scores)
best_mask = masks[best_idx]
logger.debug(f"Selected mask {best_idx} with score {scores[best_idx]:.3f}")
mask = _process_mask(best_mask)
if not _validate_mask_quality(mask, image.shape[:2]):
logger.warning("Mask quality validation failed")
if fallback_enabled:
return _fallback_segmentation(image)
else:
raise SegmentationError("Poor mask quality")
logger.debug(f"Segmentation successful - mask range: {mask.min()}-{mask.max()}")
return mask
except SegmentationError:
raise
except Exception as e:
logger.error(f"Unexpected segmentation error: {e}")
if fallback_enabled:
return _fallback_segmentation(image)
else:
raise SegmentationError(f"Unexpected error: {e}")
# ============================================================================
# MASK REFINEMENT FUNCTIONS
# ============================================================================
def refine_mask_hq(image: np.ndarray, mask: np.ndarray, matanyone_processor: Any,
fallback_enabled: bool = True) -> np.ndarray:
"""Enhanced mask refinement with MatAnyone and robust fallbacks"""
if image is None or mask is None:
raise MaskRefinementError("Invalid input image or mask")
try:
mask = _process_mask(mask)
if matanyone_processor is not None:
try:
logger.debug("Attempting MatAnyone refinement")
refined_mask = _matanyone_refine(image, mask, matanyone_processor)
if refined_mask is not None and _validate_mask_quality(refined_mask, image.shape[:2]):
logger.debug("MatAnyone refinement successful")
return refined_mask
else:
logger.warning("MatAnyone produced poor quality mask")
except Exception as e:
logger.warning(f"MatAnyone refinement failed: {e}")
if fallback_enabled:
logger.debug("Using enhanced OpenCV refinement")
return enhance_mask_opencv_advanced(image, mask)
else:
raise MaskRefinementError("MatAnyone failed and fallback disabled")
except MaskRefinementError:
raise
except Exception as e:
logger.error(f"Unexpected mask refinement error: {e}")
if fallback_enabled:
return enhance_mask_opencv_advanced(image, mask)
else:
raise MaskRefinementError(f"Unexpected error: {e}")
def enhance_mask_opencv_advanced(image: np.ndarray, mask: np.ndarray) -> np.ndarray:
"""Advanced OpenCV-based mask enhancement with multiple techniques"""
try:
if len(mask.shape) == 3:
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
if mask.max() <= 1.0:
mask = (mask * 255).astype(np.uint8)
refined_mask = cv2.bilateralFilter(mask, 9, 75, 75)
refined_mask = _guided_filter_approx(image, refined_mask, radius=8, eps=0.2)
kernel_close = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_CLOSE, kernel_close)
kernel_open = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_OPEN, kernel_open)
refined_mask = cv2.GaussianBlur(refined_mask, (3, 3), 0.8)
_, refined_mask = cv2.threshold(refined_mask, 127, 255, cv2.THRESH_BINARY)
return refined_mask
except Exception as e:
logger.warning(f"Enhanced OpenCV refinement failed: {e}")
return cv2.GaussianBlur(mask, (5, 5), 1.0)
# ============================================================================
# MATANYONE REFINEMENT (NEW LOGIC)
# ============================================================================
def _matanyone_refine(image: np.ndarray, mask: np.ndarray, matanyone_processor: Any) -> Optional[np.ndarray]:
"""Safe MatAnyOne refinement for a single frame with correct interface."""
try:
# Check for correct MatAnyOne interface
if not hasattr(matanyone_processor, 'step') or not hasattr(matanyone_processor, 'output_prob_to_mask'):
logger.warning("MatAnyOne processor missing required methods (step, output_prob_to_mask)")
return None
# Preprocess image: ensure float32, RGB, (C, H, W)
if isinstance(image, np.ndarray):
img = image.astype(np.float32)
if img.max() > 1.0:
img /= 255.0
if img.shape[2] == 3:
img = np.transpose(img, (2, 0, 1)) # (H, W, C) → (C, H, W)
img_tensor = torch.from_numpy(img)
else:
img_tensor = image # assume already tensor
# Preprocess mask: ensure float32, (H, W)
if isinstance(mask, np.ndarray):
mask_tensor = mask.astype(np.float32)
if mask_tensor.max() > 1.0:
mask_tensor /= 255.0
if mask_tensor.ndim > 2:
mask_tensor = mask_tensor.squeeze()
mask_tensor = torch.from_numpy(mask_tensor)
else:
mask_tensor = mask
# Move tensors to processor's device if available
device = getattr(matanyone_processor, 'device', 'cpu')
img_tensor = img_tensor.to(device)
mask_tensor = mask_tensor.to(device)
# Step: encode mask on this frame
objects = [1] # single object id
with torch.no_grad():
output_prob = matanyone_processor.step(img_tensor, mask_tensor, objects=objects)
# MatAnyOne returns output_prob as tensor
refined_mask_tensor = matanyone_processor.output_prob_to_mask(output_prob)
# Convert to numpy and to uint8
refined_mask = refined_mask_tensor.squeeze().detach().cpu().numpy()
if refined_mask.max() <= 1.0:
refined_mask = (refined_mask * 255).astype(np.uint8)
else:
refined_mask = np.clip(refined_mask, 0, 255).astype(np.uint8)
logger.debug("MatAnyOne refinement successful")
return refined_mask
except Exception as e:
logger.warning(f"MatAnyOne refinement error: {e}")
return None
# ============================================================================
# BACKGROUND REPLACEMENT FUNCTIONS
# ============================================================================
def replace_background_hq(frame: np.ndarray, mask: np.ndarray, background: np.ndarray,
fallback_enabled: bool = True) -> np.ndarray:
"""Enhanced background replacement with comprehensive error handling"""
if frame is None or mask is None or background is None:
raise BackgroundReplacementError("Invalid input frame, mask, or background")
try:
background = cv2.resize(background, (frame.shape[1], frame.shape[0]),
interpolation=cv2.INTER_LANCZOS4)
if len(mask.shape) == 3:
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
if mask.dtype != np.uint8:
mask = mask.astype(np.uint8)
if mask.max() <= 1.0:
logger.debug("Converting normalized mask to 0-255 range")
mask = (mask * 255).astype(np.uint8)
try:
result = _advanced_compositing(frame, mask, background)
logger.debug("Advanced compositing successful")
return result
except Exception as e:
logger.warning(f"Advanced compositing failed: {e}")
if fallback_enabled:
return _simple_compositing(frame, mask, background)
else:
raise BackgroundReplacementError(f"Advanced compositing failed: {e}")
except BackgroundReplacementError:
raise
except Exception as e:
logger.error(f"Unexpected background replacement error: {e}")
if fallback_enabled:
return _simple_compositing(frame, mask, background)
else:
raise BackgroundReplacementError(f"Unexpected error: {e}")
def create_professional_background(bg_config: Dict[str, Any], width: int, height: int) -> np.ndarray:
"""Enhanced professional background creation with quality improvements"""
try:
if bg_config["type"] == "color":
background = _create_solid_background(bg_config, width, height)
elif bg_config["type"] == "gradient":
background = _create_gradient_background_enhanced(bg_config, width, height)
else:
background = np.full((height, width, 3), (128, 128, 128), dtype=np.uint8)
background = _apply_background_adjustments(background, bg_config)
return background
except Exception as e:
logger.error(f"Background creation error: {e}")
return np.full((height, width, 3), (128, 128, 128), dtype=np.uint8)
# ============================================================================
# VALIDATION FUNCTION
# ============================================================================
def validate_video_file(video_path: str) -> Tuple[bool, str]:
"""Enhanced video file validation with detailed checks"""
if not video_path or not os.path.exists(video_path):
return False, "Video file not found"
try:
file_size = os.path.getsize(video_path)
if file_size == 0:
return False, "Video file is empty"
if file_size > 2 * 1024 * 1024 * 1024:
return False, "Video file too large (>2GB)"
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return False, "Cannot open video file"
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
cap.release()
if frame_count == 0:
return False, "Video appears to be empty (0 frames)"
if fps <= 0 or fps > 120:
return False, f"Invalid frame rate: {fps}"
if width <= 0 or height <= 0:
return False, f"Invalid resolution: {width}x{height}"
if width > 4096 or height > 4096:
return False, f"Resolution too high: {width}x{height} (max 4096x4096)"
duration = frame_count / fps
if duration > 300:
return False, f"Video too long: {duration:.1f}s (max 300s)"
return True, f"Valid video: {width}x{height}, {fps:.1f}fps, {duration:.1f}s"
except Exception as e:
return False, f"Error validating video: {str(e)}"
# ============================================================================
# HELPER FUNCTIONS - SEGMENTATION
# ============================================================================
def _segment_with_intelligent_prompts(image: np.ndarray, predictor: Any, fallback_enabled: bool = True) -> np.ndarray:
"""Intelligent automatic prompt generation for segmentation with safe predictor access"""
try:
# Double-check predictor validity
if predictor is None or not hasattr(predictor, 'predict'):
if fallback_enabled:
return _fallback_segmentation(image)
else:
raise SegmentationError("Invalid predictor in intelligent prompts")
h, w = image.shape[:2]
pos_points, neg_points = _generate_smart_prompts(image)
if len(pos_points) == 0:
pos_points = np.array([[w//2, h//2]], dtype=np.float32)
points = np.vstack([pos_points, neg_points])
labels = np.hstack([
np.ones(len(pos_points), dtype=np.int32),
np.zeros(len(neg_points), dtype=np.int32)
])
logger.debug(f"Using {len(pos_points)} positive, {len(neg_points)} negative points")
with torch.no_grad():
masks, scores, _ = predictor.predict(
point_coords=points,
point_labels=labels,
multimask_output=True
)
if masks is None or len(masks) == 0:
raise SegmentationError("No masks generated")
if scores is not None and len(scores) > 0:
best_idx = np.argmax(scores)
best_mask = masks[best_idx]
logger.debug(f"Selected mask {best_idx} with score {scores[best_idx]:.3f}")
else:
best_mask = masks[0]
return _process_mask(best_mask)
except Exception as e:
logger.error(f"Intelligent prompting failed: {e}")
if fallback_enabled:
return _fallback_segmentation(image)
else:
raise
def _segment_with_basic_prompts(image: np.ndarray, predictor: Any, fallback_enabled: bool = True) -> np.ndarray:
"""Basic prompting method for segmentation with safe predictor access"""
try:
# Double-check predictor validity
if predictor is None or not hasattr(predictor, 'predict'):
if fallback_enabled:
return _fallback_segmentation(image)
else:
raise SegmentationError("Invalid predictor in basic prompts")
h, w = image.shape[:2]
positive_points = np.array([
[w//2, h//3],
[w//2, h//2],
[w//2, 2*h//3],
], dtype=np.float32)
negative_points = np.array([
[w//10, h//10],
[9*w//10, h//10],
[w//10, 9*h//10],
[9*w//10, 9*h//10],
], dtype=np.float32)
points = np.vstack([positive_points, negative_points])
labels = np.array([1, 1, 1, 0, 0, 0, 0], dtype=np.int32)
with torch.no_grad():
masks, scores, _ = predictor.predict(
point_coords=points,
point_labels=labels,
multimask_output=True
)
if masks is None or len(masks) == 0:
raise SegmentationError("No masks generated")
best_idx = np.argmax(scores) if scores is not None and len(scores) > 0 else 0
best_mask = masks[best_idx]
return _process_mask(best_mask)
except Exception as e:
logger.error(f"Basic prompting failed: {e}")
if fallback_enabled:
return _fallback_segmentation(image)
else:
raise
def _generate_smart_prompts(image: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Generate optimal positive/negative points automatically"""
try:
h, w = image.shape[:2]
try:
saliency = cv2.saliency.StaticSaliencySpectralResidual_create()
success, saliency_map = saliency.computeSaliency(image)
if success:
saliency_thresh = cv2.threshold(saliency_map, 0.7, 1, cv2.THRESH_BINARY)[1]
contours, _ = cv2.findContours((saliency_thresh * 255).astype(np.uint8),
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
positive_points = []
if contours:
for contour in sorted(contours, key=cv2.contourArea, reverse=True)[:3]:
M = cv2.moments(contour)
if M["m00"] != 0:
cx = int(M["m10"] / M["m00"])
cy = int(M["m01"] / M["m00"])
if 0 < cx < w and 0 < cy < h:
positive_points.append([cx, cy])
if positive_points:
logger.debug(f"Generated {len(positive_points)} saliency-based points")
positive_points = np.array(positive_points, dtype=np.float32)
else:
raise Exception("No valid saliency points found")
except Exception as e:
logger.debug(f"Saliency method failed: {e}, using fallback")
positive_points = np.array([
[w//2, h//3],
[w//2, h//2],
[w//2, 2*h//3],
], dtype=np.float32)
negative_points = np.array([
[10, 10],
[w-10, 10],
[10, h-10],
[w-10, h-10],
[w//2, 5],
[w//2, h-5],
], dtype=np.float32)
return positive_points, negative_points
except Exception as e:
logger.warning(f"Smart prompt generation failed: {e}")
h, w = image.shape[:2]
positive_points = np.array([[w//2, h//2]], dtype=np.float32)
negative_points = np.array([[10, 10], [w-10, 10]], dtype=np.float32)
return positive_points, negative_points
# ============================================================================
# HELPER FUNCTIONS - REFINEMENT
# ============================================================================
def _auto_refine_mask_iteratively(image: np.ndarray, initial_mask: np.ndarray,
predictor: Any, max_iterations: int = 2) -> np.ndarray:
"""Automatically refine mask based on quality assessment with safe predictor access"""
try:
# Check predictor validity before iterative refinement
if predictor is None or not hasattr(predictor, 'predict'):
logger.warning("Predictor invalid for iterative refinement, returning initial mask")
return initial_mask
current_mask = initial_mask.copy()
for iteration in range(max_iterations):
quality_score = _assess_mask_quality(current_mask, image)
logger.debug(f"Iteration {iteration}: quality score = {quality_score:.3f}")
if quality_score > 0.85:
logger.debug(f"Quality sufficient after {iteration} iterations")
break
problem_areas = _find_mask_errors(current_mask, image)
if np.any(problem_areas):
corrective_points, corrective_labels = _generate_corrective_prompts(
image, current_mask, problem_areas
)
if len(corrective_points) > 0:
try:
with torch.no_grad():
masks, scores, _ = predictor.predict(
point_coords=corrective_points,
point_labels=corrective_labels,
mask_input=current_mask[None, :, :],
multimask_output=False
)
if masks is not None and len(masks) > 0:
refined_mask = _process_mask(masks[0])
if _assess_mask_quality(refined_mask, image) > quality_score:
current_mask = refined_mask
logger.debug(f"Improved mask in iteration {iteration}")
else:
logger.debug(f"Refinement didn't improve quality in iteration {iteration}")
break
except Exception as e:
logger.debug(f"Refinement iteration {iteration} failed: {e}")
break
else:
logger.debug("No problem areas detected")
break
return current_mask
except Exception as e:
logger.warning(f"Iterative refinement failed: {e}")
return initial_mask
def _assess_mask_quality(mask: np.ndarray, image: np.ndarray) -> float:
"""Assess mask quality automatically"""
try:
h, w = image.shape[:2]
scores = []
mask_area = np.sum(mask > 127)
total_area = h * w
area_ratio = mask_area / total_area
if 0.05 <= area_ratio <= 0.8:
area_score = 1.0
elif area_ratio < 0.05:
area_score = area_ratio / 0.05
else:
area_score = max(0, 1.0 - (area_ratio - 0.8) / 0.2)
scores.append(area_score)
mask_binary = mask > 127
if np.any(mask_binary):
mask_center_y, mask_center_x = np.where(mask_binary)
center_y = np.mean(mask_center_y) / h
center_x = np.mean(mask_center_x) / w
center_score = 1.0 - min(abs(center_x - 0.5), abs(center_y - 0.5))
scores.append(center_score)
else:
scores.append(0.0)
edges = cv2.Canny(mask, 50, 150)
edge_density = np.sum(edges > 0) / total_area
smoothness_score = max(0, 1.0 - edge_density * 10)
scores.append(smoothness_score)
num_labels, _ = cv2.connectedComponents(mask)
connectivity_score = max(0, 1.0 - (num_labels - 2) * 0.2)
scores.append(connectivity_score)
weights = [0.3, 0.2, 0.3, 0.2]
overall_score = np.average(scores, weights=weights)
return overall_score
except Exception as e:
logger.warning(f"Quality assessment failed: {e}")
return 0.5
def _find_mask_errors(mask: np.ndarray, image: np.ndarray) -> np.ndarray:
"""Identify problematic areas in mask"""
try:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 50, 150)
mask_edges = cv2.Canny(mask, 50, 150)
edge_discrepancy = cv2.bitwise_xor(edges, mask_edges)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
error_regions = cv2.dilate(edge_discrepancy, kernel, iterations=1)
return error_regions > 0
except Exception as e:
logger.warning(f"Error detection failed: {e}")
return np.zeros_like(mask, dtype=bool)
def _generate_corrective_prompts(image: np.ndarray, mask: np.ndarray,
problem_areas: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Generate corrective prompts based on problem areas"""
try:
contours, _ = cv2.findContours(problem_areas.astype(np.uint8),
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
corrective_points = []
corrective_labels = []
for contour in contours:
if cv2.contourArea(contour) > 100:
M = cv2.moments(contour)
if M["m00"] != 0:
cx = int(M["m10"] / M["m00"])
cy = int(M["m01"] / M["m00"])
current_mask_value = mask[cy, cx]
if current_mask_value < 127:
corrective_points.append([cx, cy])
corrective_labels.append(1)
else:
corrective_points.append([cx, cy])
corrective_labels.append(0)
return (np.array(corrective_points, dtype=np.float32) if corrective_points else np.array([]).reshape(0, 2),
np.array(corrective_labels, dtype=np.int32) if corrective_labels else np.array([], dtype=np.int32))
except Exception as e:
logger.warning(f"Corrective prompt generation failed: {e}")
return np.array([]).reshape(0, 2), np.array([], dtype=np.int32)
# ============================================================================
# HELPER FUNCTIONS - PROCESSING
# ============================================================================
def _process_mask(mask: np.ndarray) -> np.ndarray:
"""Process raw mask to ensure correct format and range"""
try:
if len(mask.shape) > 2:
mask = mask.squeeze()
if len(mask.shape) > 2:
mask = mask[:, :, 0] if mask.shape[2] > 0 else mask.sum(axis=2)
if mask.dtype == bool:
mask = mask.astype(np.uint8) * 255
elif mask.dtype == np.float32 or mask.dtype == np.float64:
if mask.max() <= 1.0:
mask = (mask * 255).astype(np.uint8)
else:
mask = np.clip(mask, 0, 255).astype(np.uint8)
else:
mask = mask.astype(np.uint8)
kernel = np.ones((3, 3), np.uint8)
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
_, mask = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)
return mask
except Exception as e:
logger.error(f"Mask processing failed: {e}")
h, w = mask.shape[:2] if len(mask.shape) >= 2 else (256, 256)
fallback = np.zeros((h, w), dtype=np.uint8)
fallback[h//4:3*h//4, w//4:3*w//4] = 255
return fallback
def _validate_mask_quality(mask: np.ndarray, image_shape: Tuple[int, int]) -> bool:
"""Validate that the mask meets quality criteria"""
try:
h, w = image_shape
mask_area = np.sum(mask > 127)
total_area = h * w
area_ratio = mask_area / total_area
if area_ratio < 0.05 or area_ratio > 0.8:
logger.warning(f"Suspicious mask area ratio: {area_ratio:.3f}")
return False
mask_binary = mask > 127
mask_center_y, mask_center_x = np.where(mask_binary)
if len(mask_center_y) == 0:
logger.warning("Empty mask")
return False
center_y = np.mean(mask_center_y)
center_x = np.mean(mask_center_x)
if center_y < h * 0.2 or center_y > h * 0.9:
logger.warning(f"Mask center too far from expected person location: y={center_y/h:.2f}")
return False
return True
except Exception as e:
logger.warning(f"Mask validation error: {e}")
return True
def _fallback_segmentation(image: np.ndarray) -> np.ndarray:
"""Fallback segmentation when AI models fail"""
try:
logger.info("Using fallback segmentation strategy")
h, w = image.shape[:2]
try:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
edge_pixels = np.concatenate([
gray[0, :], gray[-1, :], gray[:, 0], gray[:, -1]
])
bg_color = np.median(edge_pixels)
diff = np.abs(gray.astype(float) - bg_color)
mask = (diff > 30).astype(np.uint8) * 255
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 7))
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
if _validate_mask_quality(mask, image.shape[:2]):
logger.info("Background subtraction fallback successful")
return mask
except Exception as e:
logger.warning(f"Background subtraction fallback failed: {e}")
mask = np.zeros((h, w), dtype=np.uint8)
center_x, center_y = w // 2, h // 2
radius_x, radius_y = w // 3, h // 2.5
y, x = np.ogrid[:h, :w]
mask_ellipse = ((x - center_x) / radius_x) ** 2 + ((y - center_y) / radius_y) ** 2 <= 1
mask[mask_ellipse] = 255
logger.info("Using geometric fallback mask")
return mask
except Exception as e:
logger.error(f"All fallback strategies failed: {e}")
h, w = image.shape[:2]
mask = np.zeros((h, w), dtype=np.uint8)
mask[h//6:5*h//6, w//4:3*w//4] = 255
return mask
def _guided_filter_approx(guide: np.ndarray, mask: np.ndarray, radius: int = 8, eps: float = 0.2) -> np.ndarray:
"""Approximation of guided filter for edge-aware smoothing"""
try:
guide_gray = cv2.cvtColor(guide, cv2.COLOR_BGR2GRAY) if len(guide.shape) == 3 else guide
guide_gray = guide_gray.astype(np.float32) / 255.0
mask_float = mask.astype(np.float32) / 255.0
kernel_size = 2 * radius + 1
mean_guide = cv2.boxFilter(guide_gray, -1, (kernel_size, kernel_size))
mean_mask = cv2.boxFilter(mask_float, -1, (kernel_size, kernel_size))
corr_guide_mask = cv2.boxFilter(guide_gray * mask_float, -1, (kernel_size, kernel_size))
cov_guide_mask = corr_guide_mask - mean_guide * mean_mask
mean_guide_sq = cv2.boxFilter(guide_gray * guide_gray, -1, (kernel_size, kernel_size))
var_guide = mean_guide_sq - mean_guide * mean_guide
a = cov_guide_mask / (var_guide + eps)
b = mean_mask - a * mean_guide
mean_a = cv2.boxFilter(a, -1, (kernel_size, kernel_size))
mean_b = cv2.boxFilter(b, -1, (kernel_size, kernel_size))
output = mean_a * guide_gray + mean_b
output = np.clip(output * 255, 0, 255).astype(np.uint8)
return output
except Exception as e:
logger.warning(f"Guided filter approximation failed: {e}")
return mask
# ============================================================================
# HELPER FUNCTIONS - COMPOSITING
# ============================================================================
def _advanced_compositing(frame: np.ndarray, mask: np.ndarray, background: np.ndarray) -> np.ndarray:
"""Advanced compositing with edge feathering and color correction"""
try:
threshold = 100
_, mask_binary = cv2.threshold(mask, threshold, 255, cv2.THRESH_BINARY)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
mask_binary = cv2.morphologyEx(mask_binary, cv2.MORPH_CLOSE, kernel)
mask_binary = cv2.morphologyEx(mask_binary, cv2.MORPH_OPEN, kernel)
mask_smooth = cv2.GaussianBlur(mask_binary.astype(np.float32), (5, 5), 1.0)
mask_smooth = mask_smooth / 255.0
mask_smooth = np.power(mask_smooth, 0.8)
mask_smooth = np.where(mask_smooth > 0.5,
np.minimum(mask_smooth * 1.1, 1.0),
mask_smooth * 0.9)
frame_adjusted = _color_match_edges(frame, background, mask_smooth)
alpha_3ch = np.stack([mask_smooth] * 3, axis=2)
frame_float = frame_adjusted.astype(np.float32)
background_float = background.astype(np.float32)
result = frame_float * alpha_3ch + background_float * (1 - alpha_3ch)
result = np.clip(result, 0, 255).astype(np.uint8)
return result
except Exception as e:
logger.error(f"Advanced compositing error: {e}")
raise
def _color_match_edges(frame: np.ndarray, background: np.ndarray, alpha: np.ndarray) -> np.ndarray:
"""Subtle color matching at edges to reduce halos"""
try:
edge_mask = cv2.Sobel(alpha, cv2.CV_64F, 1, 1, ksize=3)
edge_mask = np.abs(edge_mask)
edge_mask = (edge_mask > 0.1).astype(np.float32)
edge_areas = edge_mask > 0
if not np.any(edge_areas):
return frame
frame_adjusted = frame.copy().astype(np.float32)
background_float = background.astype(np.float32)
adjustment_strength = 0.1
for c in range(3):
frame_adjusted[:, :, c] = np.where(
edge_areas,
frame_adjusted[:, :, c] * (1 - adjustment_strength) +
background_float[:, :, c] * adjustment_strength,
frame_adjusted[:, :, c]
)
return np.clip(frame_adjusted, 0, 255).astype(np.uint8)
except Exception as e:
logger.warning(f"Color matching failed: {e}")
return frame
def _simple_compositing(frame: np.ndarray, mask: np.ndarray, background: np.ndarray) -> np.ndarray:
"""Simple fallback compositing method"""
try:
logger.info("Using simple compositing fallback")
background = cv2.resize(background, (frame.shape[1], frame.shape[0]))
if len(mask.shape) == 3:
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
if mask.max() <= 1.0:
mask = (mask * 255).astype(np.uint8)
_, mask_binary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)
mask_norm = mask_binary.astype(np.float32) / 255.0
mask_3ch = np.stack([mask_norm] * 3, axis=2)
result = frame * mask_3ch + background * (1 - mask_3ch)
return result.astype(np.uint8)
except Exception as e:
logger.error(f"Simple compositing failed: {e}")
return frame
# ============================================================================
# HELPER FUNCTIONS - BACKGROUND CREATION
# ============================================================================
def _create_solid_background(bg_config: Dict[str, Any], width: int, height: int) -> np.ndarray:
"""Create solid color background"""
color_hex = bg_config["colors"][0].lstrip('#')
color_rgb = tuple(int(color_hex[i:i+2], 16) for i in (0, 2, 4))
color_bgr = color_rgb[::-1]
return np.full((height, width, 3), color_bgr, dtype=np.uint8)
def _create_gradient_background_enhanced(bg_config: Dict[str, Any], width: int, height: int) -> np.ndarray:
"""Create enhanced gradient background with better quality"""
try:
colors = bg_config["colors"]
direction = bg_config.get("direction", "vertical")
rgb_colors = []
for color_hex in colors:
color_hex = color_hex.lstrip('#')
rgb = tuple(int(color_hex[i:i+2], 16) for i in (0, 2, 4))
rgb_colors.append(rgb)
if not rgb_colors:
rgb_colors = [(128, 128, 128)]
if direction == "vertical":
background = _create_vertical_gradient(rgb_colors, width, height)
elif direction == "horizontal":
background = _create_horizontal_gradient(rgb_colors, width, height)
elif direction == "diagonal":
background = _create_diagonal_gradient(rgb_colors, width, height)
elif direction in ["radial", "soft_radial"]:
background = _create_radial_gradient(rgb_colors, width, height, direction == "soft_radial")
else:
background = _create_vertical_gradient(rgb_colors, width, height)
return cv2.cvtColor(background, cv2.COLOR_RGB2BGR)
except Exception as e:
logger.error(f"Gradient creation error: {e}")
return np.full((height, width, 3), (128, 128, 128), dtype=np.uint8)
def _create_vertical_gradient(colors: list, width: int, height: int) -> np.ndarray:
"""Create vertical gradient using NumPy for performance"""
gradient = np.zeros((height, width, 3), dtype=np.uint8)
for y in range(height):
progress = y / height if height > 0 else 0
color = _interpolate_color(colors, progress)
gradient[y, :] = color
return gradient
def _create_horizontal_gradient(colors: list, width: int, height: int) -> np.ndarray:
"""Create horizontal gradient using NumPy for performance"""
gradient = np.zeros((height, width, 3), dtype=np.uint8)
for x in range(width):
progress = x / width if width > 0 else 0
color = _interpolate_color(colors, progress)
gradient[:, x] = color
return gradient
def _create_diagonal_gradient(colors: list, width: int, height: int) -> np.ndarray:
"""Create diagonal gradient using vectorized operations"""
y_coords, x_coords = np.mgrid[0:height, 0:width]
max_distance = width + height
progress = (x_coords + y_coords) / max_distance
progress = np.clip(progress, 0, 1)
gradient = np.zeros((height, width, 3), dtype=np.uint8)
for c in range(3):
gradient[:, :, c] = _vectorized_color_interpolation(colors, progress, c)
return gradient
def _create_radial_gradient(colors: list, width: int, height: int, soft: bool = False) -> np.ndarray:
"""Create radial gradient using vectorized operations"""
center_x, center_y = width // 2, height // 2
max_distance = np.sqrt(center_x**2 + center_y**2)
y_coords, x_coords = np.mgrid[0:height, 0:width]
distances = np.sqrt((x_coords - center_x)**2 + (y_coords - center_y)**2)
progress = distances / max_distance
progress = np.clip(progress, 0, 1)
if soft:
progress = np.power(progress, 0.7)
gradient = np.zeros((height, width, 3), dtype=np.uint8)
for c in range(3):
gradient[:, :, c] = _vectorized_color_interpolation(colors, progress, c)
return gradient
def _vectorized_color_interpolation(colors: list, progress: np.ndarray, channel: int) -> np.ndarray:
"""Vectorized color interpolation for performance"""
if len(colors) == 1:
return np.full_like(progress, colors[0][channel], dtype=np.uint8)
num_segments = len(colors) - 1
segment_progress = progress * num_segments
segment_indices = np.floor(segment_progress).astype(int)
segment_indices = np.clip(segment_indices, 0, num_segments - 1)
local_progress = segment_progress - segment_indices
start_colors = np.array([colors[i][channel] for i in range(len(colors))])
end_colors = np.array([colors[min(i + 1, len(colors) - 1)][channel] for i in range(len(colors))])
start_vals = start_colors[segment_indices]
end_vals = end_colors[segment_indices]
result = start_vals + (end_vals - start_vals) * local_progress
return np.clip(result, 0, 255).astype(np.uint8)
def _interpolate_color(colors: list, progress: float) -> tuple:
"""Interpolate between multiple colors"""
if len(colors) == 1:
return colors[0]
elif len(colors) == 2:
r = int(colors[0][0] + (colors[1][0] - colors[0][0]) * progress)
g = int(colors[0][1] + (colors[1][1] - colors[0][1]) * progress)
b = int(colors[0][2] + (colors[1][2] - colors[0][2]) * progress)
return (r, g, b)
else:
segment = progress * (len(colors) - 1)
idx = int(segment)
local_progress = segment - idx
if idx >= len(colors) - 1:
return colors[-1]
c1, c2 = colors[idx], colors[idx + 1]
r = int(c1[0] + (c2[0] - c1[0]) * local_progress)
g = int(c1[1] + (c2[1] - c1[1]) * local_progress)
b = int(c1[2] + (c2[2] - c1[2]) * local_progress)
return (r, g, b)
def _apply_background_adjustments(background: np.ndarray, bg_config: Dict[str, Any]) -> np.ndarray:
"""Apply brightness and contrast adjustments to background"""
try:
brightness = bg_config.get("brightness", 1.0)
contrast = bg_config.get("contrast", 1.0)
if brightness != 1.0 or contrast != 1.0:
background = background.astype(np.float32)
background = background * contrast * brightness
background = np.clip(background, 0, 255).astype(np.uint8)
return background
except Exception as e:
logger.warning(f"Background adjustment failed: {e}")
return background
|