File size: 10,049 Bytes
811c5bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
"""
Pytest configuration and fixtures for BackgroundFX Pro tests.
"""

import pytest
import numpy as np
import torch
import cv2
import tempfile
import shutil
from pathlib import Path
from unittest.mock import Mock, MagicMock
import os
import sys

# Add parent directory to path for imports
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))


# ============================================================================
# Configuration
# ============================================================================

@pytest.fixture(scope="session")
def test_config():
    """Test configuration."""
    return {
        'device': 'cpu',  # Use CPU for testing
        'test_data_dir': Path(__file__).parent / 'data',
        'temp_dir': tempfile.mkdtemp(prefix='bgfx_test_'),
        'max_test_duration': 30,  # seconds
        'use_gpu': torch.cuda.is_available()
    }


@pytest.fixture(scope="session", autouse=True)
def cleanup(test_config):
    """Cleanup after all tests."""
    yield
    # Clean up temp directory
    if os.path.exists(test_config['temp_dir']):
        shutil.rmtree(test_config['temp_dir'])


# ============================================================================
# Image and Video Fixtures
# ============================================================================

@pytest.fixture
def sample_image():
    """Create a sample image for testing."""
    # Create 512x512 RGB image with a person-like shape
    image = np.zeros((512, 512, 3), dtype=np.uint8)
    
    # Add background
    image[:, :] = [100, 150, 200]  # Blue background
    
    # Add person-like shape (simple rectangle for testing)
    cv2.rectangle(image, (150, 100), (350, 450), (50, 100, 50), -1)
    
    # Add some texture
    noise = np.random.randint(0, 20, (512, 512, 3), dtype=np.uint8)
    image = cv2.add(image, noise)
    
    return image


@pytest.fixture
def sample_mask():
    """Create a sample mask for testing."""
    mask = np.zeros((512, 512), dtype=np.uint8)
    # Create person mask
    cv2.rectangle(mask, (150, 100), (350, 450), 255, -1)
    # Add some edge refinement
    mask = cv2.GaussianBlur(mask, (5, 5), 2)
    return mask


@pytest.fixture
def sample_background():
    """Create a sample background image."""
    background = np.zeros((512, 512, 3), dtype=np.uint8)
    # Create gradient background
    for i in range(512):
        background[i, :] = [
            int(255 * (i / 512)),  # Red gradient
            100,  # Fixed green
            int(255 * (1 - i / 512))  # Blue inverse gradient
        ]
    return background


@pytest.fixture
def sample_video(test_config):
    """Create a sample video file for testing."""
    video_path = Path(test_config['temp_dir']) / 'test_video.mp4'
    
    # Create video writer
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    out = cv2.VideoWriter(str(video_path), fourcc, 30.0, (512, 512))
    
    # Write 30 frames (1 second at 30fps)
    for i in range(30):
        frame = np.zeros((512, 512, 3), dtype=np.uint8)
        # Animate a moving rectangle
        x = 100 + i * 5
        cv2.rectangle(frame, (x, 200), (x + 100, 400), (0, 255, 0), -1)
        out.write(frame)
    
    out.release()
    return str(video_path)


# ============================================================================
# Model Fixtures
# ============================================================================

@pytest.fixture
def mock_model():
    """Create a mock ML model for testing."""
    model = MagicMock()
    model.eval = MagicMock(return_value=None)
    model.to = MagicMock(return_value=model)
    
    # Mock forward pass
    def forward(x):
        batch_size = x.shape[0] if hasattr(x, 'shape') else 1
        return torch.randn(batch_size, 1, 512, 512)
    
    model.__call__ = MagicMock(side_effect=forward)
    model.forward = MagicMock(side_effect=forward)
    
    return model


@pytest.fixture
def mock_sam2_predictor():
    """Create a mock SAM2 predictor."""
    predictor = MagicMock()
    
    def predict(image):
        h, w = image.shape[:2] if len(image.shape) > 2 else (512, 512)
        return np.random.randint(0, 2, (h, w), dtype=np.uint8) * 255
    
    predictor.predict = MagicMock(side_effect=predict)
    predictor.set_image = MagicMock(return_value=None)
    
    return predictor


@pytest.fixture
def mock_matanyone_model():
    """Create a mock MatAnyone model."""
    model = MagicMock()
    
    def refine(image, mask):
        return cv2.GaussianBlur(mask, (5, 5), 2)
    
    model.refine = MagicMock(side_effect=refine)
    
    return model


# ============================================================================
# Pipeline and Processing Fixtures
# ============================================================================

@pytest.fixture
def pipeline_config():
    """Create pipeline configuration for testing."""
    from api.pipeline import PipelineConfig
    
    return PipelineConfig(
        use_gpu=False,  # CPU for testing
        quality_preset='medium',
        enable_cache=False,  # Disable cache for testing
        batch_size=1,
        max_workers=2
    )


@pytest.fixture
def mock_pipeline(pipeline_config):
    """Create a mock processing pipeline."""
    from api.pipeline import ProcessingPipeline
    
    # Mock the pipeline to avoid loading real models
    with pytest.MonkeyPatch().context() as m:
        m.setattr('api.pipeline.ModelFactory.load_model', 
                  lambda self, *args, **kwargs: Mock())
        pipeline = ProcessingPipeline(pipeline_config)
    
    return pipeline


# ============================================================================
# API and Server Fixtures
# ============================================================================

@pytest.fixture
def api_client():
    """Create a test client for the API."""
    from fastapi.testclient import TestClient
    from api.api_server import app
    
    return TestClient(app)


@pytest.fixture
def mock_job_manager():
    """Create a mock job manager."""
    manager = MagicMock()
    manager.create_job = MagicMock(return_value='test-job-123')
    manager.get_job = MagicMock(return_value={'status': 'processing'})
    manager.update_job = MagicMock(return_value=None)
    
    return manager


# ============================================================================
# File System Fixtures
# ============================================================================

@pytest.fixture
def temp_dir(test_config):
    """Create a temporary directory for test files."""
    temp_path = Path(test_config['temp_dir']) / 'test_run'
    temp_path.mkdir(parents=True, exist_ok=True)
    yield temp_path
    # Cleanup
    if temp_path.exists():
        shutil.rmtree(temp_path)


@pytest.fixture
def sample_files(temp_dir, sample_image):
    """Create sample files in temp directory."""
    files = {}
    
    # Save sample image
    image_path = temp_dir / 'sample.jpg'
    cv2.imwrite(str(image_path), sample_image)
    files['image'] = image_path
    
    # Create multiple images for batch testing
    for i in range(3):
        path = temp_dir / f'image_{i}.jpg'
        cv2.imwrite(str(path), sample_image)
        files[f'image_{i}'] = path
    
    return files


# ============================================================================
# Model Registry Fixtures
# ============================================================================

@pytest.fixture
def mock_registry():
    """Create a mock model registry."""
    from models.registry import ModelRegistry, ModelInfo, ModelTask, ModelFramework
    
    registry = ModelRegistry(models_dir=Path(tempfile.mkdtemp()))
    
    # Add test model
    test_model = ModelInfo(
        model_id='test-model',
        name='Test Model',
        version='1.0',
        task=ModelTask.SEGMENTATION,
        framework=ModelFramework.PYTORCH,
        url='http://example.com/model.pth',
        filename='test_model.pth',
        file_size=1000000
    )
    
    registry.register_model(test_model)
    
    return registry


# ============================================================================
# WebSocket Fixtures
# ============================================================================

@pytest.fixture
def mock_websocket():
    """Create a mock WebSocket connection."""
    ws = MagicMock()
    ws.accept = MagicMock(return_value=None)
    ws.send_json = MagicMock(return_value=None)
    ws.receive_text = MagicMock(return_value='{"type": "ping", "data": {}}')
    
    return ws


# ============================================================================
# Utility Fixtures
# ============================================================================

@pytest.fixture
def mock_progress_callback():
    """Create a mock progress callback."""
    callback = MagicMock()
    return callback


@pytest.fixture
def device():
    """Get device for testing."""
    return 'cuda' if torch.cuda.is_available() else 'cpu'


@pytest.fixture
def performance_timer():
    """Timer for performance testing."""
    import time
    
    class Timer:
        def __init__(self):
            self.start_time = None
            self.elapsed = 0
        
        def __enter__(self):
            self.start_time = time.time()
            return self
        
        def __exit__(self, *args):
            self.elapsed = time.time() - self.start_time
    
    return Timer


# ============================================================================
# Markers
# ============================================================================

def pytest_configure(config):
    """Register custom markers."""
    config.addinivalue_line(
        "markers", "slow: marks tests as slow (deselect with '-m \"not slow\"')"
    )
    config.addinivalue_line(
        "markers", "gpu: marks tests that require GPU"
    )
    config.addinivalue_line(
        "markers", "integration: marks integration tests"
    )
    config.addinivalue_line(
        "markers", "unit: marks unit tests"
    )