File size: 27,285 Bytes
00a34b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
"""
Video processing API module for BackgroundFX Pro.
Wraps CoreVideoProcessor with additional API features for streaming, batching, and real-time processing.
"""

import cv2
import numpy as np
import torch
from typing import Dict, List, Optional, Tuple, Union, Callable, Generator, Any
from dataclasses import dataclass, field
from enum import Enum
from pathlib import Path
import time
import threading
from queue import Queue, Empty
import tempfile
import shutil
from concurrent.futures import ThreadPoolExecutor, as_completed
import subprocess
import json
import os
import asyncio
from datetime import datetime

from ..utils.logger import setup_logger
from ..utils.device import DeviceManager
from ..utils import TimeEstimator, MemoryMonitor
from ..core.temporal import TemporalCoherence
from .pipeline import ProcessingPipeline, PipelineConfig, PipelineResult, ProcessingMode

# Import your existing CoreVideoProcessor
from core_video import CoreVideoProcessor

logger = setup_logger(__name__)


class VideoStreamMode(Enum):
    """Video streaming modes."""
    FILE = "file"
    WEBCAM = "webcam"
    RTSP = "rtsp"
    HTTP = "http"
    VIRTUAL = "virtual"
    SCREEN = "screen"


class OutputFormat(Enum):
    """Output format options."""
    MP4 = "mp4"
    AVI = "avi"
    MOV = "mov"
    WEBM = "webm"
    HLS = "hls"
    DASH = "dash"
    FRAMES = "frames"


@dataclass
class StreamConfig:
    """Configuration for video streaming."""
    # Input configuration
    source: Union[str, int] = 0  # File path, camera index, or URL
    stream_mode: VideoStreamMode = VideoStreamMode.FILE
    
    # Output configuration
    output_path: Optional[str] = None
    output_format: OutputFormat = OutputFormat.MP4
    output_codec: str = "h264"
    output_bitrate: str = "5M"
    output_fps: Optional[float] = None
    
    # Streaming settings
    buffer_size: int = 30
    chunk_duration: float = 2.0  # For HLS/DASH
    enable_adaptive_bitrate: bool = False
    
    # Real-time settings
    enable_preview: bool = False
    preview_scale: float = 0.5
    low_latency: bool = False
    
    # Performance
    hardware_acceleration: bool = True
    num_threads: int = 4


@dataclass
class VideoStats:
    """Enhanced video processing statistics."""
    # Timing
    start_time: float = 0.0
    total_duration: float = 0.0
    processing_fps: float = 0.0
    
    # Frame stats
    frames_total: int = 0
    frames_processed: int = 0
    frames_dropped: int = 0
    frames_cached: int = 0
    
    # Quality metrics
    avg_quality_score: float = 0.0
    min_quality_score: float = 1.0
    max_quality_score: float = 0.0
    
    # Performance
    cpu_usage: float = 0.0
    gpu_usage: float = 0.0
    memory_usage_mb: float = 0.0
    
    # Errors
    error_count: int = 0
    warnings: List[str] = field(default_factory=list)


class VideoProcessorAPI:
    """
    API wrapper for video processing with streaming and real-time capabilities.
    Extends CoreVideoProcessor with additional features.
    """
    
    def __init__(self, core_processor: Optional[CoreVideoProcessor] = None):
        """
        Initialize Video Processor API.
        
        Args:
            core_processor: Optional existing CoreVideoProcessor instance
        """
        self.logger = setup_logger(f"{__name__}.VideoProcessorAPI")
        
        # Use provided core processor or create pipeline-based one
        self.core_processor = core_processor
        self.pipeline = ProcessingPipeline(PipelineConfig(mode=ProcessingMode.VIDEO))
        
        # State management
        self.is_processing = False
        self.is_streaming = False
        self.should_stop = False
        
        # Statistics
        self.stats = VideoStats()
        
        # Streaming components
        self.input_queue = Queue(maxsize=100)
        self.output_queue = Queue(maxsize=100)
        self.preview_queue = Queue(maxsize=10)
        
        # Thread pool
        self.executor = ThreadPoolExecutor(max_workers=8)
        self.stream_thread = None
        self.process_threads = []
        
        # FFmpeg process for advanced streaming
        self.ffmpeg_process = None
        
        # WebRTC support
        self.webrtc_peers = {}
        
        self.logger.info("VideoProcessorAPI initialized")
    
    async def process_video_async(self,
                                 input_path: str,
                                 output_path: str,
                                 background: Optional[Union[str, np.ndarray]] = None,
                                 progress_callback: Optional[Callable] = None) -> VideoStats:
        """
        Asynchronously process a video file.
        
        Args:
            input_path: Path to input video
            output_path: Path to output video
            background: Background image or path
            progress_callback: Progress callback function
            
        Returns:
            Processing statistics
        """
        return await asyncio.get_event_loop().run_in_executor(
            None,
            self.process_video,
            input_path,
            output_path,
            background,
            progress_callback
        )
    
    def process_video(self,
                     input_path: str,
                     output_path: str,
                     background: Optional[Union[str, np.ndarray]] = None,
                     progress_callback: Optional[Callable] = None) -> VideoStats:
        """
        Process a video file using either CoreVideoProcessor or Pipeline.
        
        Args:
            input_path: Path to input video
            output_path: Path to output video
            background: Background image or path
            progress_callback: Progress callback function
            
        Returns:
            Processing statistics
        """
        self.stats = VideoStats(start_time=time.time())
        self.is_processing = True
        
        try:
            # If we have CoreVideoProcessor, use it
            if self.core_processor:
                return self._process_with_core(
                    input_path, output_path, background, progress_callback
                )
            else:
                # Use pipeline-based processing
                return self._process_with_pipeline(
                    input_path, output_path, background, progress_callback
                )
                
        finally:
            self.is_processing = False
            self.stats.total_duration = time.time() - self.stats.start_time
    
    def _process_with_pipeline(self,
                              input_path: str,
                              output_path: str,
                              background: Optional[Union[str, np.ndarray]],
                              progress_callback: Optional[Callable]) -> VideoStats:
        """Process video using the Pipeline system."""
        
        cap = cv2.VideoCapture(input_path)
        if not cap.isOpened():
            raise ValueError(f"Cannot open video: {input_path}")
        
        # Get video properties
        fps = cap.get(cv2.CAP_PROP_FPS)
        width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        
        self.stats.frames_total = total_frames
        
        # Setup output writer
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
        
        frame_idx = 0
        
        try:
            while True:
                ret, frame = cap.read()
                if not ret:
                    break
                
                # Process frame through pipeline
                result = self.pipeline.process_image(frame, background)
                
                if result.success and result.output_image is not None:
                    out.write(result.output_image)
                    self.stats.frames_processed += 1
                    
                    # Update quality metrics
                    self._update_quality_stats(result.quality_score)
                else:
                    # Write original frame on failure
                    out.write(frame)
                    self.stats.frames_dropped += 1
                
                frame_idx += 1
                
                # Progress callback
                if progress_callback:
                    progress = frame_idx / total_frames
                    progress_callback(progress, {
                        'current_frame': frame_idx,
                        'total_frames': total_frames,
                        'fps': self.stats.frames_processed / (time.time() - self.stats.start_time)
                    })
                
                # Check if should stop
                if self.should_stop:
                    break
                    
        finally:
            cap.release()
            out.release()
            
        self.stats.processing_fps = self.stats.frames_processed / (time.time() - self.stats.start_time)
        return self.stats
    
    def _process_with_core(self,
                          input_path: str,
                          output_path: str,
                          background: Optional[Union[str, np.ndarray]],
                          progress_callback: Optional[Callable]) -> VideoStats:
        """Process video using CoreVideoProcessor."""
        
        # Determine background choice
        if isinstance(background, str):
            if os.path.exists(background):
                bg_choice = "custom"
                custom_bg = background
            else:
                bg_choice = background
                custom_bg = None
        elif isinstance(background, np.ndarray):
            # Save background to temp file
            temp_bg = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
            cv2.imwrite(temp_bg.name, background)
            bg_choice = "custom"
            custom_bg = temp_bg.name
        else:
            bg_choice = "blur"
            custom_bg = None
        
        # Process with CoreVideoProcessor
        output, message = self.core_processor.process_video(
            input_path,
            bg_choice,
            custom_bg,
            progress_callback
        )
        
        if output:
            # Move output to desired location
            shutil.move(output, output_path)
            
            # Extract stats from core processor
            core_stats = self.core_processor.stats
            self.stats.frames_processed = core_stats.get('successful_frames', 0)
            self.stats.frames_dropped = core_stats.get('failed_frames', 0)
            self.stats.processing_fps = core_stats.get('average_fps', 0)
        
        return self.stats
    
    def start_stream_processing(self,
                              config: StreamConfig,
                              background: Optional[Union[str, np.ndarray]] = None) -> bool:
        """
        Start real-time stream processing.
        
        Args:
            config: Stream configuration
            background: Background for replacement
            
        Returns:
            True if stream started successfully
        """
        if self.is_streaming:
            self.logger.warning("Stream already active")
            return False
        
        self.is_streaming = True
        self.should_stop = False
        
        # Start input stream thread
        self.stream_thread = threading.Thread(
            target=self._stream_input_handler,
            args=(config,)
        )
        self.stream_thread.start()
        
        # Start processing threads
        for i in range(config.num_threads):
            thread = threading.Thread(
                target=self._stream_processor,
                args=(background,)
            )
            thread.start()
            self.process_threads.append(thread)
        
        # Start output handler
        if config.output_format in [OutputFormat.HLS, OutputFormat.DASH]:
            self._start_adaptive_streaming(config)
        else:
            self._start_output_handler(config)
        
        self.logger.info(f"Stream processing started: {config.stream_mode.value}")
        return True
    
    def _stream_input_handler(self, config: StreamConfig):
        """Handle input stream capture."""
        try:
            # Open input stream
            if config.stream_mode == VideoStreamMode.FILE:
                cap = cv2.VideoCapture(config.source)
            elif config.stream_mode == VideoStreamMode.WEBCAM:
                cap = cv2.VideoCapture(int(config.source))
            elif config.stream_mode in [VideoStreamMode.RTSP, VideoStreamMode.HTTP]:
                cap = cv2.VideoCapture(config.source)
            elif config.stream_mode == VideoStreamMode.SCREEN:
                # Screen capture (platform-specific)
                cap = self._setup_screen_capture()
            else:
                raise ValueError(f"Unsupported stream mode: {config.stream_mode}")
            
            if not cap.isOpened():
                raise ValueError("Failed to open stream")
            
            frame_count = 0
            
            while self.is_streaming and not self.should_stop:
                ret, frame = cap.read()
                if not ret:
                    if config.stream_mode == VideoStreamMode.FILE:
                        # End of file
                        break
                    else:
                        # Retry for live streams
                        time.sleep(0.1)
                        continue
                
                # Add frame to processing queue
                try:
                    self.input_queue.put(frame, timeout=0.1)
                    frame_count += 1
                except:
                    # Queue full, drop frame
                    self.stats.frames_dropped += 1
                
                # Control frame rate for live streams
                if config.stream_mode != VideoStreamMode.FILE:
                    time.sleep(1.0 / 30)  # 30 FPS limit
            
            cap.release()
            
        except Exception as e:
            self.logger.error(f"Stream input handler error: {e}")
        finally:
            self.is_streaming = False
    
    def _stream_processor(self, background: Optional[Union[str, np.ndarray]]):
        """Process frames from input queue."""
        while self.is_streaming or not self.input_queue.empty():
            try:
                frame = self.input_queue.get(timeout=0.5)
                
                # Process frame
                result = self.pipeline.process_image(frame, background)
                
                if result.success and result.output_image is not None:
                    # Add to output queue
                    self.output_queue.put(result.output_image)
                    
                    # Update stats
                    self.stats.frames_processed += 1
                    self._update_quality_stats(result.quality_score)
                    
                    # Add to preview queue if enabled
                    if not self.preview_queue.full():
                        preview = cv2.resize(result.output_image, None, fx=0.5, fy=0.5)
                        try:
                            self.preview_queue.put_nowait(preview)
                        except:
                            pass
                            
            except Empty:
                continue
            except Exception as e:
                self.logger.error(f"Stream processor error: {e}")
                self.stats.error_count += 1
    
    def _start_output_handler(self, config: StreamConfig):
        """Start output stream handler."""
        output_thread = threading.Thread(
            target=self._output_handler,
            args=(config,)
        )
        output_thread.start()
        self.process_threads.append(output_thread)
    
    def _output_handler(self, config: StreamConfig):
        """Handle output stream writing."""
        try:
            if config.output_format == OutputFormat.FRAMES:
                # Save individual frames
                self._save_frames_output(config)
            else:
                # Video file output
                self._save_video_output(config)
                
        except Exception as e:
            self.logger.error(f"Output handler error: {e}")
    
    def _save_video_output(self, config: StreamConfig):
        """Save processed frames to video file."""
        out = None
        frame_count = 0
        
        try:
            while self.is_streaming or not self.output_queue.empty():
                try:
                    frame = self.output_queue.get(timeout=0.5)
                    
                    # Initialize writer on first frame
                    if out is None:
                        h, w = frame.shape[:2]
                        fps = config.output_fps or 30.0
                        
                        if config.output_format == OutputFormat.MP4:
                            fourcc = cv2.VideoWriter_fourcc(*'mp4v')
                        elif config.output_format == OutputFormat.AVI:
                            fourcc = cv2.VideoWriter_fourcc(*'XVID')
                        else:
                            fourcc = cv2.VideoWriter_fourcc(*'mp4v')
                        
                        out = cv2.VideoWriter(
                            config.output_path,
                            fourcc,
                            fps,
                            (w, h)
                        )
                    
                    out.write(frame)
                    frame_count += 1
                    
                except Empty:
                    continue
                    
        finally:
            if out:
                out.release()
                self.logger.info(f"Saved {frame_count} frames to {config.output_path}")
    
    def _save_frames_output(self, config: StreamConfig):
        """Save processed frames as individual images."""
        output_dir = Path(config.output_path)
        output_dir.mkdir(parents=True, exist_ok=True)
        
        frame_count = 0
        
        while self.is_streaming or not self.output_queue.empty():
            try:
                frame = self.output_queue.get(timeout=0.5)
                
                # Save frame
                frame_path = output_dir / f"frame_{frame_count:06d}.png"
                cv2.imwrite(str(frame_path), frame)
                frame_count += 1
                
            except Empty:
                continue
    
    def _start_adaptive_streaming(self, config: StreamConfig):
        """Start HLS or DASH adaptive streaming."""
        try:
            # Prepare FFmpeg command for streaming
            if config.output_format == OutputFormat.HLS:
                self._start_hls_streaming(config)
            elif config.output_format == OutputFormat.DASH:
                self._start_dash_streaming(config)
                
        except Exception as e:
            self.logger.error(f"Adaptive streaming setup failed: {e}")
    
    def _start_hls_streaming(self, config: StreamConfig):
        """Start HLS streaming with FFmpeg."""
        output_dir = Path(config.output_path)
        output_dir.mkdir(parents=True, exist_ok=True)
        
        # FFmpeg command for HLS
        cmd = [
            'ffmpeg',
            '-f', 'rawvideo',
            '-pix_fmt', 'bgr24',
            '-s', '1920x1080',  # Will be updated with actual size
            '-r', '30',
            '-i', '-',  # Input from pipe
            '-c:v', 'libx264',
            '-preset', 'ultrafast',
            '-tune', 'zerolatency',
            '-f', 'hls',
            '-hls_time', str(config.chunk_duration),
            '-hls_list_size', '10',
            '-hls_flags', 'delete_segments',
            str(output_dir / 'stream.m3u8')
        ]
        
        # Start FFmpeg process
        self.ffmpeg_process = subprocess.Popen(
            cmd,
            stdin=subprocess.PIPE,
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE
        )
        
        # Start thread to pipe frames to FFmpeg
        ffmpeg_thread = threading.Thread(
            target=self._pipe_to_ffmpeg
        )
        ffmpeg_thread.start()
        self.process_threads.append(ffmpeg_thread)
        
        self.logger.info(f"HLS streaming started: {output_dir / 'stream.m3u8'}")
    
    def _pipe_to_ffmpeg(self):
        """Pipe processed frames to FFmpeg."""
        while self.is_streaming or not self.output_queue.empty():
            try:
                frame = self.output_queue.get(timeout=0.5)
                
                if self.ffmpeg_process and self.ffmpeg_process.stdin:
                    self.ffmpeg_process.stdin.write(frame.tobytes())
                    
            except Empty:
                continue
            except Exception as e:
                self.logger.error(f"FFmpeg pipe error: {e}")
                break
    
    def _setup_screen_capture(self) -> cv2.VideoCapture:
        """Setup screen capture (platform-specific)."""
        # This would need platform-specific implementation
        # For now, return a dummy capture
        return cv2.VideoCapture(0)
    
    def _update_quality_stats(self, quality_score: float):
        """Update quality statistics."""
        n = self.stats.frames_processed
        if n == 0:
            self.stats.avg_quality_score = quality_score
        else:
            self.stats.avg_quality_score = (
                (self.stats.avg_quality_score * n + quality_score) / (n + 1)
            )
        
        self.stats.min_quality_score = min(self.stats.min_quality_score, quality_score)
        self.stats.max_quality_score = max(self.stats.max_quality_score, quality_score)
    
    def stop_stream_processing(self):
        """Stop stream processing."""
        self.should_stop = True
        self.is_streaming = False
        
        # Wait for threads to finish
        if self.stream_thread:
            self.stream_thread.join(timeout=5)
        
        for thread in self.process_threads:
            thread.join(timeout=5)
        
        # Stop FFmpeg if running
        if self.ffmpeg_process:
            self.ffmpeg_process.terminate()
            self.ffmpeg_process.wait(timeout=5)
        
        self.logger.info("Stream processing stopped")
    
    def get_preview_frame(self) -> Optional[np.ndarray]:
        """Get a preview frame from the preview queue."""
        try:
            return self.preview_queue.get_nowait()
        except Empty:
            return None
    
    def get_stats(self) -> VideoStats:
        """Get current processing statistics."""
        if self.is_processing or self.is_streaming:
            self.stats.processing_fps = (
                self.stats.frames_processed / 
                (time.time() - self.stats.start_time)
            )
        return self.stats
    
    def process_video_batch(self,
                           input_paths: List[str],
                           output_dir: str,
                           background: Optional[Union[str, np.ndarray]] = None,
                           parallel: bool = True) -> List[VideoStats]:
        """
        Process multiple videos in batch.
        
        Args:
            input_paths: List of input video paths
            output_dir: Output directory
            background: Background for all videos
            parallel: Process in parallel
            
        Returns:
            List of processing statistics
        """
        output_dir = Path(output_dir)
        output_dir.mkdir(parents=True, exist_ok=True)
        
        results = []
        
        if parallel:
            # Process in parallel
            futures = []
            
            for input_path in input_paths:
                input_name = Path(input_path).stem
                output_path = output_dir / f"{input_name}_processed.mp4"
                
                future = self.executor.submit(
                    self.process_video,
                    input_path,
                    str(output_path),
                    background
                )
                futures.append(future)
            
            # Collect results
            for future in as_completed(futures):
                try:
                    stats = future.result(timeout=3600)  # 1 hour timeout
                    results.append(stats)
                except Exception as e:
                    self.logger.error(f"Batch processing error: {e}")
                    results.append(VideoStats(error_count=1))
        else:
            # Process sequentially
            for input_path in input_paths:
                input_name = Path(input_path).stem
                output_path = output_dir / f"{input_name}_processed.mp4"
                
                stats = self.process_video(
                    input_path,
                    str(output_path),
                    background
                )
                results.append(stats)
        
        return results
    
    def export_to_format(self,
                        input_path: str,
                        output_path: str,
                        format: OutputFormat,
                        **kwargs) -> bool:
        """
        Export processed video to specific format.
        
        Args:
            input_path: Input video path
            output_path: Output path
            format: Target format
            **kwargs: Format-specific options
            
        Returns:
            True if successful
        """
        try:
            if format == OutputFormat.WEBM:
                cmd = [
                    'ffmpeg', '-i', input_path,
                    '-c:v', 'libvpx-vp9',
                    '-crf', '30',
                    '-b:v', '0',
                    output_path
                ]
            elif format == OutputFormat.HLS:
                cmd = [
                    'ffmpeg', '-i', input_path,
                    '-c:v', 'libx264',
                    '-hls_time', '10',
                    '-hls_list_size', '0',
                    '-f', 'hls',
                    output_path
                ]
            else:
                # Default MP4 conversion
                cmd = [
                    'ffmpeg', '-i', input_path,
                    '-c:v', 'libx264',
                    '-preset', 'medium',
                    '-crf', '23',
                    output_path
                ]
            
            result = subprocess.run(cmd, capture_output=True, text=True)
            return result.returncode == 0
            
        except Exception as e:
            self.logger.error(f"Export failed: {e}")
            return False
    
    def cleanup(self):
        """Cleanup resources."""
        self.stop_stream_processing()
        self.executor.shutdown(wait=True)
        
        if self.core_processor:
            self.core_processor.cleanup()
        
        self.logger.info("VideoProcessorAPI cleanup complete")