File size: 10,784 Bytes
b31bba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import torch
import yaml
import argparse
import os
import numpy as np
from tqdm import tqdm
from PIL import Image
from torch.utils.data import Dataset, DataLoader
from collections import OrderedDict

# Import your models
from models.unet import Unet, Encoder
from models.vae import VAE
from flow_matching.solver import ODESolver
from flow_matching.utils import ModelWrapper

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

def strip_prefix_if_present(state_dict, prefix="_orig_mod."):
    new_state_dict = {}
    for k, v in state_dict.items():
        if k.startswith(prefix):
            new_state_dict[k[len(prefix):]] = v
        else:
            new_state_dict[k] = v
    return new_state_dict

def strip_orig_mod(state_dict):
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        new_key = k.replace('_orig_mod.', '') if k.startswith('_orig_mod.') else k
        new_state_dict[new_key] = v
    return new_state_dict

class WrappedModel(ModelWrapper):
    def __init__(self, model, encoder=None):
        super().__init__(model)
        self.encoder = encoder
        self.condition = None
    
    def set_condition(self, condition):
        self.condition = condition
    
    def forward(self, x: torch.Tensor, t: torch.Tensor, **extras):
        if self.condition is None:
            raise ValueError("Condition not set. Call set_condition() first.")
        return self.model(x, t, self.condition)

class InferenceDataset(Dataset):
    def __init__(self, im_path, im_size):
        """
        Dataset for inference on PNG images
        """
        self.im_path = im_path
        self.im_size = im_size
        
        # Find all PNG image files
        self.image_files = []
        
        # Support both single directory and nested directory structures
        if os.path.isfile(im_path) and im_path.lower().endswith('.png'):
            # Single file
            self.image_files = [im_path]
        else:
            # Directory or nested directories
            for root, dirs, files in os.walk(im_path):
                for file in files:
                    if file.lower().endswith('.png'):
                        self.image_files.append(os.path.join(root, file))
        
        if not self.image_files:
            raise ValueError(f"No PNG files found in {im_path}")
        
        print(f"Found {len(self.image_files)} PNG images")
    
    def __len__(self):
        return len(self.image_files)
    
    def get_image_path(self, idx):
        return self.image_files[idx]
    
    def __getitem__(self, idx):
        img_path = self.image_files[idx]
        
        try:
            # Load PNG image using PIL
            img = Image.open(img_path).convert('RGB')
            
            # Resize if needed
            if img.size != (self.im_size, self.im_size):
                img = img.resize((self.im_size, self.im_size), Image.LANCZOS)
            
            # Convert to numpy array and normalize to [0, 1]
            img_array = np.array(img, dtype=np.float32) / 255.0
            
            # Convert to [-1, 1] range
            img_array = 2 * img_array - 1
            
            # Convert to tensor (H, W, C) -> (C, H, W)
            img_tensor = torch.from_numpy(img_array.transpose(2, 0, 1)).float()
            
            return img_tensor
            
        except Exception as e:
            print(f"Error processing {img_path}: {e}")
            return torch.zeros(3, self.im_size, self.im_size)

def save_png_image(image_array, output_path):
    """
    Save numpy array as PNG file
    image_array: numpy array of shape (H, W, C) or (H, W) for grayscale
    Values should be in [0, 1] range
    """
    os.makedirs(os.path.dirname(output_path), exist_ok=True)
    
    # Clip values to [0, 1] and convert to [0, 255]
    image_array = np.clip(image_array, 0, 1)
    image_array = (image_array * 255).astype(np.uint8)
    
    if len(image_array.shape) == 2:  # Grayscale
        img = Image.fromarray(image_array, mode='L')
    else:  # RGB
        img = Image.fromarray(image_array, mode='RGB')
    
    img.save(output_path)

def get_output_filename(input_path, output_dir, suffix):
    """
    Generate output filename based on input path
    """
    # Get the base filename without extension
    base_name = os.path.splitext(os.path.basename(input_path))[0]
    output_filename = f"{base_name}_{suffix}.png"
    return os.path.join(output_dir, output_filename)


def inference(args):
    # Load config
    with open(args.config_path, 'r') as file:
        config = yaml.safe_load(file)
    
    dataset_config = config['dataset_params_input']
    autoencoder_model_config = config['autoencoder_params']
    train_config = config['train_params']
    
    # Initialize models
    encoder = Encoder(im_channels=dataset_config['im_channels']).to(device)
    model = Unet(im_channels=autoencoder_model_config['z_channels']).to(device)
    vae = VAE(latent_dim=8).to(device)
    
    # Set models to evaluation mode
    encoder.eval()
    model.eval()
    vae.eval()
    
    # Load model checkpoint
    checkpoint_path = args.model_checkpoint 
    print(checkpoint_path)
    if os.path.exists(checkpoint_path):
        print(f"Loading checkpoint from {checkpoint_path}")
        checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)
        
        if isinstance(checkpoint, dict) and 'model_state_dict' in checkpoint:
            model.load_state_dict(strip_orig_mod(checkpoint['model_state_dict']))
            encoder.load_state_dict(strip_orig_mod(checkpoint['encoder_state_dict']))
        else:
            model.load_state_dict(strip_orig_mod(checkpoint))
        print("Model loaded successfully")
    else:
        raise FileNotFoundError(f"Checkpoint not found at {checkpoint_path}")
    
    # Load VAE
    vae_path = os.path.join("checkpoints", train_config['vae_autoencoder_ckpt_name'])
    if os.path.exists(vae_path):
        print(f'Loading VAE checkpoint from {vae_path}')
        checkpoint_vae = torch.load(vae_path, weights_only=False, map_location=device)
        model_state_dict = strip_prefix_if_present(checkpoint_vae['model_state_dict'], '_orig_mod.')
        vae.load_state_dict(model_state_dict)
        print('VAE loaded successfully')
    else:
        raise FileNotFoundError(f"VAE checkpoint not found at {vae_path}")
    
    # Create dataset and dataloader
    inference_dataset = InferenceDataset(args.input_path, dataset_config['im_size'])
    dataloader = DataLoader(inference_dataset, batch_size=args.batch_size, shuffle=False, num_workers=2)
    
    # Create output directories
    albedo_dir = os.path.join(args.output_path, 'albedo')
    shading_dir = os.path.join(args.output_path, 'shading')
    os.makedirs(albedo_dir, exist_ok=True)
    os.makedirs(shading_dir, exist_ok=True)
    
    # Create wrapped model for sampling
    wrapped_model = WrappedModel(model, encoder)
    solver = ODESolver(velocity_model=wrapped_model)
    
    # Process images
    with torch.no_grad():
        for batch_idx, ldr_batch in enumerate(tqdm(dataloader, desc="Processing images")):
            ldr_batch = ldr_batch.to(device)
            batch_size = ldr_batch.size(0)
            
            # Get latent dimensions
            latent_channels = autoencoder_model_config['z_channels']
            latent_size = train_config['im_size_lt']
            
            # Generate initial noise
            x_init = torch.randn(batch_size, latent_channels, latent_size, latent_size).to(device)
            
            # Encode LDR image
            ldr_encoded = encoder(ldr_batch)
            wrapped_model.set_condition(ldr_encoded)
            
            # Sample shading latents
            shading_latents = solver.sample(
                x_init=x_init,
                method='euler',
                step_size=1,  # Adjust based on your needs
                return_intermediates=False
            )
            
            # Decode shading latents to image space
            shading_images = vae.decoder(shading_latents)
            
            # Process each image in the batch
            for i in range(batch_size):
                # Get input image path
                img_idx = batch_idx * args.batch_size + i
                if img_idx >= len(inference_dataset):
                    break
                    
                input_path = inference_dataset.get_image_path(img_idx)
                
                # Convert tensors to numpy
                ldr_np = ldr_batch[i].cpu().numpy().transpose(1, 2, 0)  # CHW -> HWC
                shading_np = shading_images[i].cpu().numpy().squeeze()  # Remove channel dim for grayscale
                
                # Convert from [-1,1] to [0,1]
                ldr_final = (ldr_np + 1) / 2
                shading_final = (shading_np + 1) / 2
                
                # Calculate albedo: albedo = ldr / shading 
                shading_3d = np.stack([shading_final] * 3, axis=2)  # Make shading 3-channel
                albedo_final = ldr_final / (shading_3d)
                albedo_final = np.clip(albedo_final, 0, 1)  # Ensure valid range
                
                # Generate output paths
                albedo_path = get_output_filename(input_path, albedo_dir, "albedo")
                shading_path = get_output_filename(input_path, shading_dir, "shading")
                
                # Save images as PNG
                save_png_image(albedo_final, albedo_path)
                save_png_image(shading_final, shading_path)
                
                if (img_idx + 1) % 10 == 0:
                    print(f"Processed {img_idx + 1} images")
    
    print(f"Inference completed! Results saved to:")
    print(f"  Albedo: {albedo_dir}")
    print(f"  Shading: {shading_dir}")

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Inference for LDR to Albedo/Shading separation')
    parser.add_argument('--config', dest='config_path', 
                        default='config/unet_hyperism.yaml', type=str,
                        help='Path to config file')
    parser.add_argument('--model_checkpoint', type=str,default="checkpoints/result.pth",
                        help='Path to trained model checkpoint')
    parser.add_argument('--input_path', type=str, required=True,
                        help='Path to input PNG images (file or directory)')
    parser.add_argument('--output_path', type=str, required=True,
                        help='Output directory (will create albedo/ and shading/ subdirs)')
    parser.add_argument('--batch_size', type=int, default=1,
                        help='Batch size for inference')
    
    args = parser.parse_args()
    inference(args)