Spaces:
Sleeping
Sleeping
File size: 10,784 Bytes
b31bba1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import torch
import yaml
import argparse
import os
import numpy as np
from tqdm import tqdm
from PIL import Image
from torch.utils.data import Dataset, DataLoader
from collections import OrderedDict
# Import your models
from models.unet import Unet, Encoder
from models.vae import VAE
from flow_matching.solver import ODESolver
from flow_matching.utils import ModelWrapper
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def strip_prefix_if_present(state_dict, prefix="_orig_mod."):
new_state_dict = {}
for k, v in state_dict.items():
if k.startswith(prefix):
new_state_dict[k[len(prefix):]] = v
else:
new_state_dict[k] = v
return new_state_dict
def strip_orig_mod(state_dict):
new_state_dict = OrderedDict()
for k, v in state_dict.items():
new_key = k.replace('_orig_mod.', '') if k.startswith('_orig_mod.') else k
new_state_dict[new_key] = v
return new_state_dict
class WrappedModel(ModelWrapper):
def __init__(self, model, encoder=None):
super().__init__(model)
self.encoder = encoder
self.condition = None
def set_condition(self, condition):
self.condition = condition
def forward(self, x: torch.Tensor, t: torch.Tensor, **extras):
if self.condition is None:
raise ValueError("Condition not set. Call set_condition() first.")
return self.model(x, t, self.condition)
class InferenceDataset(Dataset):
def __init__(self, im_path, im_size):
"""
Dataset for inference on PNG images
"""
self.im_path = im_path
self.im_size = im_size
# Find all PNG image files
self.image_files = []
# Support both single directory and nested directory structures
if os.path.isfile(im_path) and im_path.lower().endswith('.png'):
# Single file
self.image_files = [im_path]
else:
# Directory or nested directories
for root, dirs, files in os.walk(im_path):
for file in files:
if file.lower().endswith('.png'):
self.image_files.append(os.path.join(root, file))
if not self.image_files:
raise ValueError(f"No PNG files found in {im_path}")
print(f"Found {len(self.image_files)} PNG images")
def __len__(self):
return len(self.image_files)
def get_image_path(self, idx):
return self.image_files[idx]
def __getitem__(self, idx):
img_path = self.image_files[idx]
try:
# Load PNG image using PIL
img = Image.open(img_path).convert('RGB')
# Resize if needed
if img.size != (self.im_size, self.im_size):
img = img.resize((self.im_size, self.im_size), Image.LANCZOS)
# Convert to numpy array and normalize to [0, 1]
img_array = np.array(img, dtype=np.float32) / 255.0
# Convert to [-1, 1] range
img_array = 2 * img_array - 1
# Convert to tensor (H, W, C) -> (C, H, W)
img_tensor = torch.from_numpy(img_array.transpose(2, 0, 1)).float()
return img_tensor
except Exception as e:
print(f"Error processing {img_path}: {e}")
return torch.zeros(3, self.im_size, self.im_size)
def save_png_image(image_array, output_path):
"""
Save numpy array as PNG file
image_array: numpy array of shape (H, W, C) or (H, W) for grayscale
Values should be in [0, 1] range
"""
os.makedirs(os.path.dirname(output_path), exist_ok=True)
# Clip values to [0, 1] and convert to [0, 255]
image_array = np.clip(image_array, 0, 1)
image_array = (image_array * 255).astype(np.uint8)
if len(image_array.shape) == 2: # Grayscale
img = Image.fromarray(image_array, mode='L')
else: # RGB
img = Image.fromarray(image_array, mode='RGB')
img.save(output_path)
def get_output_filename(input_path, output_dir, suffix):
"""
Generate output filename based on input path
"""
# Get the base filename without extension
base_name = os.path.splitext(os.path.basename(input_path))[0]
output_filename = f"{base_name}_{suffix}.png"
return os.path.join(output_dir, output_filename)
def inference(args):
# Load config
with open(args.config_path, 'r') as file:
config = yaml.safe_load(file)
dataset_config = config['dataset_params_input']
autoencoder_model_config = config['autoencoder_params']
train_config = config['train_params']
# Initialize models
encoder = Encoder(im_channels=dataset_config['im_channels']).to(device)
model = Unet(im_channels=autoencoder_model_config['z_channels']).to(device)
vae = VAE(latent_dim=8).to(device)
# Set models to evaluation mode
encoder.eval()
model.eval()
vae.eval()
# Load model checkpoint
checkpoint_path = args.model_checkpoint
print(checkpoint_path)
if os.path.exists(checkpoint_path):
print(f"Loading checkpoint from {checkpoint_path}")
checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)
if isinstance(checkpoint, dict) and 'model_state_dict' in checkpoint:
model.load_state_dict(strip_orig_mod(checkpoint['model_state_dict']))
encoder.load_state_dict(strip_orig_mod(checkpoint['encoder_state_dict']))
else:
model.load_state_dict(strip_orig_mod(checkpoint))
print("Model loaded successfully")
else:
raise FileNotFoundError(f"Checkpoint not found at {checkpoint_path}")
# Load VAE
vae_path = os.path.join("checkpoints", train_config['vae_autoencoder_ckpt_name'])
if os.path.exists(vae_path):
print(f'Loading VAE checkpoint from {vae_path}')
checkpoint_vae = torch.load(vae_path, weights_only=False, map_location=device)
model_state_dict = strip_prefix_if_present(checkpoint_vae['model_state_dict'], '_orig_mod.')
vae.load_state_dict(model_state_dict)
print('VAE loaded successfully')
else:
raise FileNotFoundError(f"VAE checkpoint not found at {vae_path}")
# Create dataset and dataloader
inference_dataset = InferenceDataset(args.input_path, dataset_config['im_size'])
dataloader = DataLoader(inference_dataset, batch_size=args.batch_size, shuffle=False, num_workers=2)
# Create output directories
albedo_dir = os.path.join(args.output_path, 'albedo')
shading_dir = os.path.join(args.output_path, 'shading')
os.makedirs(albedo_dir, exist_ok=True)
os.makedirs(shading_dir, exist_ok=True)
# Create wrapped model for sampling
wrapped_model = WrappedModel(model, encoder)
solver = ODESolver(velocity_model=wrapped_model)
# Process images
with torch.no_grad():
for batch_idx, ldr_batch in enumerate(tqdm(dataloader, desc="Processing images")):
ldr_batch = ldr_batch.to(device)
batch_size = ldr_batch.size(0)
# Get latent dimensions
latent_channels = autoencoder_model_config['z_channels']
latent_size = train_config['im_size_lt']
# Generate initial noise
x_init = torch.randn(batch_size, latent_channels, latent_size, latent_size).to(device)
# Encode LDR image
ldr_encoded = encoder(ldr_batch)
wrapped_model.set_condition(ldr_encoded)
# Sample shading latents
shading_latents = solver.sample(
x_init=x_init,
method='euler',
step_size=1, # Adjust based on your needs
return_intermediates=False
)
# Decode shading latents to image space
shading_images = vae.decoder(shading_latents)
# Process each image in the batch
for i in range(batch_size):
# Get input image path
img_idx = batch_idx * args.batch_size + i
if img_idx >= len(inference_dataset):
break
input_path = inference_dataset.get_image_path(img_idx)
# Convert tensors to numpy
ldr_np = ldr_batch[i].cpu().numpy().transpose(1, 2, 0) # CHW -> HWC
shading_np = shading_images[i].cpu().numpy().squeeze() # Remove channel dim for grayscale
# Convert from [-1,1] to [0,1]
ldr_final = (ldr_np + 1) / 2
shading_final = (shading_np + 1) / 2
# Calculate albedo: albedo = ldr / shading
shading_3d = np.stack([shading_final] * 3, axis=2) # Make shading 3-channel
albedo_final = ldr_final / (shading_3d)
albedo_final = np.clip(albedo_final, 0, 1) # Ensure valid range
# Generate output paths
albedo_path = get_output_filename(input_path, albedo_dir, "albedo")
shading_path = get_output_filename(input_path, shading_dir, "shading")
# Save images as PNG
save_png_image(albedo_final, albedo_path)
save_png_image(shading_final, shading_path)
if (img_idx + 1) % 10 == 0:
print(f"Processed {img_idx + 1} images")
print(f"Inference completed! Results saved to:")
print(f" Albedo: {albedo_dir}")
print(f" Shading: {shading_dir}")
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Inference for LDR to Albedo/Shading separation')
parser.add_argument('--config', dest='config_path',
default='config/unet_hyperism.yaml', type=str,
help='Path to config file')
parser.add_argument('--model_checkpoint', type=str,default="checkpoints/result.pth",
help='Path to trained model checkpoint')
parser.add_argument('--input_path', type=str, required=True,
help='Path to input PNG images (file or directory)')
parser.add_argument('--output_path', type=str, required=True,
help='Output directory (will create albedo/ and shading/ subdirs)')
parser.add_argument('--batch_size', type=int, default=1,
help='Batch size for inference')
args = parser.parse_args()
inference(args) |