File size: 15,373 Bytes
e569c5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
#!/usr/bin/env python3
# -*- coding=utf8 -*-
########################################################################
#
# Copyright (c) 2023 Baidu.com, Inc. All Rights Reserved
#
########################################################################
"""
Author: linxiaolong
"""
import warnings
warnings.filterwarnings("ignore")
# 外部库
import re
import requests
import argparse
import json
import os
import re
import tempfile
import librosa
import numpy as np
# import torch
# from torch import no_grad, LongTensor
import commons
import gradio as gr
import gradio.utils as gr_utils
import gradio.processing_utils as gr_processing_utils
# 内部库
from models import SynthesizerTrn
from text import text_to_sequence, text_to_sequence_for_test, _clean_text
from mel_processing import spectrogram_torch
import utils
from text.symbols import symbols
limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces
punct_regex = re.compile(r"[\.!\?。!?]")
silence_duration = 200
def split_text(text, regex):
"""Split text into sentences by puncutations.
Args:
text: long text.
regex: puncutation regex.
Returns:
list of sentences.
"""
sentences = re.split(regex, text)
puncts = re.findall(regex, text)
for i, sentence in enumerate(sentences):
if sentence == "":
continue
if i < len(puncts):
sentences[i] = sentences[i] + puncts[i]
else:
sentences[i] = sentences[i] + "。"
sentences = [i for i in sentences if i != ""]
return sentences
def concat_audio(audio_list, sampling_rate=22050, silence_duration=1000):
"""Concatenate audio files and insert silence between them.
Args:
audio_list: list of audio files.
sampling_rate: audio sampling rate. Defaults to 22050.
silence_duration: silence duration in miliseconds. Defaults to 1000.
Returns:
concatenated audio.
"""
silence_samples = int(sampling_rate * silence_duration / 1000)
silence = np.zeros(silence_samples, dtype=np.float16)
audio_num = len(audio_list)
if audio_num < 2:
return audio_list[0]
audio_cat = audio_list[0]
for i in range(1, audio_num):
audio_cat = np.concatenate((audio_cat, silence, audio_list[i]), axis=0)
return audio_cat
### 外部TTS的超参数
microsoft_url = "https://japaneast.tts.speech.microsoft.com/cognitiveservices/v1"
microsoft_headers = {'Content-Type': 'application/json; charset=utf-8',
'Ocp-Apim-Subscription-Key':'1f1ef0ce53b84261be94fab81df7e628'}
microsoft_model_list = [
"ja-JP-NanamiNeural",
"ja-JP-KeitaNeural",
"ja-JP-AoiNeural",
"ja-JP-DaichiNeural",
"ja-JP-MayuNeural",
"ja-JP-NaokiNeural",
"ja-JP-ShioriNeural"
]
google_url = "http://gbu.jp02-a30-apisix-sandbox.baidu-int.com/gbu/rest/v2/tts/voice_gq"
google_headers = {'Content-Type': 'application/json; charset=utf-8',
'apikey':'synclub-2383kjhjksxfv.2341gs'}
google_model_list = [
"ja-JP-Neural2-B",
"ja-JP-Neural2-C",
"ja-JP-Neural2-D",
"ja-JP-Standard-A",
"ja-JP-Standard-B",
"ja-JP-Standard-C",
"ja-JP-Standard-D",
"ja-JP-Wavenet-A",
"ja-JP-Wavenet-B",
"ja-JP-Wavenet-C",
"ja-JP-Wavenet-D"
]
coefont_url = "http://gbu.jp02-a30-apisix-sandbox.baidu-int.com/gbu/rest/v2/tts/avatar_coe"
coefont_headers = {'Content-Type': 'application/json; charset=utf-8',
'apikey':'synclub-2383kjhjksxfv.2341gs'}
coefont_id = [
'3f84b7b1-30fb-4677-a704-fd136515303e',
'9b826785-bea5-4740-b4cd-e9a286264705',
'7632cba3-4aca-4cee-9d15-ad1ac31f670c',
'2c91238a-96f9-4cb6-a69a-461ee66b0e6d',
'08428dee-65b6-490e-a3a3-60dfcdda889d',
'c88367bc-5954-426b-a1ba-a683202803c8',
'fb64a764-91d5-4510-bddd-70df3d62709a',
'5cfa1f33-bca8-4489-bcbe-701045993162',
'94cf7792-7c0c-4be4-88e7-c30d26ab6616',
'81dbd387-6ad6-4b22-93f9-4e2a0091b2fe',
'931a8568-039a-4cef-add7-bee71629c00e',
'f91a9d29-c8b4-443f-ba07-82e7e36bd20b',
'23c76cf0-bee0-47fa-b735-9b7bdba9f26a',
'cf5fdfb8-85ea-41e1-915b-257936791f17',
'0f7b53df-3c24-46a5-84d1-cbea39a956c0',
'3d499385-d331-4cbb-93c0-2057e60eddcf',
'18ca2f7b-97ca-486d-8f47-858965833642',
'33e0a2ff-5050-434c-9506-defe97e52f15',
'516b0f32-8b5f-48c5-b60e-38d508e2b06b',
'c8720caf-2d2d-4130-8831-92f61f9e25e8',
'710001f5-e6f5-4cc0-8ba2-e6aa6da8d807',
'd36f8bb1-8bd8-4e90-964a-9dbd3e374093',
'2157796c-fe48-4688-b7cc-7ea554edf77d',
'5cc0dc91-0c6a-4c50-b7d8-f3117cfe44ef',
'be5c5295-aba2-4055-a9da-8926da7fb5a0',
'76763239-af14-4c0d-9435-956f096f77dc',
'10d298ee-ebbf-4838-a6c5-d608f2e3c338',
'694cb06e-73bd-43c4-94d4-f775ad3dbb26',
'5cf07e7c-5b1c-4360-a8de-7c928580d4b5',
'76e2ba06-b23a-4bbe-8148-e30ede9001b9',
'c25ed97f-78f7-4e8f-b2fa-f8e29633588b',
'e26382ba-2ae2-4cf7-8c1b-420ab4b845d8',
'82c4fcf5-d0ee-4fe9-9b0d-89a65d04f290'
]
coefont_model_list = [
'Canel',
'胡麻ちゃん',
'バーチャル悪霊',
'引寄\u3000法則',
'にっし~☆',
'志水 智(Tomo Shimizu)',
'花撫シア-最高精度-しっかり読み上げ',
'UNF/UserNotFound',
'RoBaKu',
'おにもち',
'小菅 将太',
'秋月つむぎ(落ち着いたナレーション)',
'碧海紘斗_OhmiHiroto',
'ちくわぶえ',
'unnamed',
'今井瑶子(高精度。MC ナレーター 落ち着いたトーンです)',
'皆のお母さん',
'後藤邑子',
'田中和彦',
'KTNR',
'天渡\u3000早苗',
'須戸ゼロ',
'とり藻々',
'武田 祐子',
'【PRO】落ち着きナレーション♯畑耕平',
'音暖ののん Ver2.0(最高精度)',
'ろさちゃん-soft-v2[最高精度] ¦ Losa-chan -soft- ∀ -汎用式概念χ',
'パイナップル秀夫お姉さん',
'minamo',
'あさのゆき',
'聲華 琴音【紡】',
'黄琴海月【うるとら】',
'高橋 俊輔']
coefont_id_model_name_dict = dict(zip(coefont_model_list, coefont_id))
all_example = "今日は天気がいいから、一緒にハイキングに行きましょう。"
# def audio_postprocess(self, y):
# """
# 修改gr的音频后处理函数
# :param self:
# :param y:
# :return:
# """
# if y is None:
# return None
# if gr_utils.validate_url(y):
# file = gr_processing_utils.download_to_file(y, dir=self.temp_dir)
# elif isinstance(y, tuple):
# sample_rate, data = y
# file = tempfile.NamedTemporaryFile(
# suffix=".wav", dir=self.temp_dir, delete=False
# )
# gr_processing_utils.audio_to_file(sample_rate, data, file.name)
# else:
# file = gr_processing_utils.create_tmp_copy_of_file(y, dir=self.temp_dir)
# return gr_processing_utils.encode_url_or_file_to_base64(file.name)
# gr.Audio.postprocess = audio_postprocess
def get_text(text, hps):
"""
:param text:
:param hps:
:param is_symbol:
:return:
"""
# hps中没有包括symbols
text_norm = text_to_sequence(text, hps.data.text_cleaners)
# hps中有包括symbols
# text_norm = text_to_sequence_for_test(text, hps.symbols, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = LongTensor(text_norm)
return text_norm
def create_tts_fn(model, hps):
"""
:param model:
:param hps:
:param speaker_ids:
:return:
"""
def tts_fn(text, speed, noise_scale=.667, noise_scale_w=0.8, volume=1.0):
"""
:param text:
:param speaker:
:param speed:
:param emo:
:param volume:
:param is_symbol:
:return:
"""
sentences = split_text(text, punct_regex)
audio_list = []
for sentence in sentences:
stn_tst = get_text(sentence, hps)
with no_grad():
x_tst = stn_tst.unsqueeze(0).to(device)
x_tst_lengths = LongTensor([stn_tst.size(0)]).to(device)
audio = model.infer(x_tst, x_tst_lengths, noise_scale=noise_scale, noise_scale_w=noise_scale_w,
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
audio_list.append(audio)
del stn_tst, x_tst, x_tst_lengths
audio = concat_audio(audio_list, hps.data.sampling_rate, silence_duration)
audio = audio * volume
return "Success", (hps.data.sampling_rate, audio)
return tts_fn
def microsoft(text, name, style="Neural"):
"""
:param text:
:param name:
:param style:
:return:
"""
headers = {
'Ocp-Apim-Subscription-Key': '1f1ef0ce53b84261be94fab81df7e628',
'Content-Type': 'application/ssml+xml',
'X-Microsoft-OutputFormat': 'audio-16khz-128kbitrate-mono-mp3',
'User-Agent': 'curl',
}
data = ("<speak version='1.0' xml:lang='en-US'>"
f"<voice xml:lang='en-US' name='{name}'>" # xml:gender='Female'
f"{text}"
"</voice>"
"</speak>")
response = requests.post(
'https://japaneast.tts.speech.microsoft.com/cognitiveservices/v1',
headers=headers,
data=data,
proxies= {
'http': 'http://192.168.3.11:80',
'https': 'http://192.168.3.11:80',
}
)
data = {
"text":text,
"name":name,
"style":style,
"format":"mp3"}
audio_url = requests.get(microsoft_url, headers=microsoft_headers, json=data).json()['data']['url']
return "Success", audio_url
def google(text, name):
"""
:param text:
:param name:
:param style:
:return:
"""
data = {
"text":text,
"name":name,
"sample_rate":16000}
audio_url = requests.get(google_url, headers=google_headers, json=data).json()['data']['url']
return "Success", audio_url
def coefont(text, name):
"""
:param text:
:param name:
:param style:
:return:
"""
data = {
"text":text,
"coefont":coefont_id_model_name_dict[name]
}
audio_url = requests.get(coefont_url, headers=coefont_headers, json=data).json()['data']['url']
return "Success", audio_url
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
parser.add_argument("--port", type=int, default=8080, help="port")
parser.add_argument('--model_info_path', type=str, default='/gluster/speech_data/info.json')
args = parser.parse_args()
device = torch.device(args.device)
models_tts = []
with open(args.model_info_path, "r", encoding="utf-8") as f:
models_info = json.load(f)
for i, info in models_info.items():
model_name = info["model_name"]
author = info["author"]
lang = info["lang"]
example = info["example"]
config_path = info["config_path"]
model_path = info["model_path"]
model_type = info["model_type"]
hps = utils.get_hparams_from_file(config_path)
if model_type == "vits":
emotion_type = None
elif model_type == "vits-emotion":
emotion_type = "embedding"
elif model_type == "vits-emotion-logits":
emotion_type = "logits"
model = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
emotion_type=emotion_type,
**hps.model)
utils.load_checkpoint(model_path, model, None)
model.eval().to(device)
if model_type == "vits":
# 普通TTS
models_tts.append((model_name, author, lang, example, create_tts_fn(model, hps)))
app = gr.Blocks()
with app:
gr.Markdown("## Japanese TTS Demo")
with gr.Tabs():
with gr.TabItem("自研"):
with gr.Tabs():
for i, (model_name, author, lang, example, tts_fn) in enumerate(models_tts):
with gr.TabItem(model_name):
with gr.Column():
tts_input1 = gr.TextArea(label="Text", value=example)
tts_input2 = gr.Slider(label="Speed", value=1.0, minimum=0.4, maximum=3, step=0.1)
tts_input3 = gr.Slider(label="noise_scale", value=0.0, minimum=0.0, maximum=2, step=0.1)
tts_input4 = gr.Slider(label="noise_scale_w", value=0.0,
minimum=0.0, maximum=2, step=0.1)
tts_input5 = gr.Slider(label="volume", value=1.0, minimum=0.1, maximum=4, step=0.1)
tts_submit = gr.Button("Generate", variant="primary")
tts_output1 = gr.Textbox(label="Output Message")
tts_output2 = gr.Audio(label="Output Audio")
tts_submit.click(tts_fn, [tts_input1, tts_input2, tts_input3, tts_input4, tts_input5],
[tts_output1, tts_output2])
with gr.TabItem("谷歌"):
tts_input1 = gr.TextArea(label="Text", value=all_example)
tts_input2 = gr.Dropdown(google_model_list, label="name")
tts_submit = gr.Button("Generate", variant="primary")
tts_output1 = gr.Textbox(label="Output Message")
tts_output2 = gr.Audio(label="Output Audio")
tts_submit.click(google, [tts_input1, tts_input2],
[tts_output1, tts_output2])
with gr.TabItem("微软"):
tts_input1 = gr.TextArea(label="Text", value=all_example)
tts_input2 = gr.Dropdown(microsoft_model_list, label="name")
tts_submit = gr.Button("Generate", variant="primary")
tts_output1 = gr.Textbox(label="Output Message")
tts_output2 = gr.Audio(label="Output Audio")
tts_submit.click(microsoft, [tts_input1, tts_input2],
[tts_output1, tts_output2])
with gr.TabItem("coefont"):
tts_input1 = gr.TextArea(label="Text", value=all_example)
tts_input2 = gr.Dropdown(coefont_model_list, label="name")
tts_submit = gr.Button("Generate", variant="primary")
tts_output1 = gr.Textbox(label="Output Message")
tts_output2 = gr.Audio(label="Output Audio")
tts_submit.click(coefont, [tts_input1, tts_input2],
[tts_output1, tts_output2])
app.queue(concurrency_count=5).launch(show_api=False,
share=args.share,
server_name='0.0.0.0',
server_port=args.port,
show_error=True)
|