Spaces:
Runtime error
Runtime error
File size: 15,884 Bytes
63613eb 9849e1c ab86a13 018d89a 63613eb 8bc16b1 63613eb 9849e1c d646457 8bc16b1 d646457 018d89a d646457 63613eb 018d89a 8bc16b1 018d89a 8bc16b1 018d89a d646457 018d89a d646457 018d89a 8bc16b1 018d89a 8bc16b1 d646457 018d89a 85a9cee 8bc16b1 018d89a d646457 018d89a 63613eb 018d89a 85a9cee 018d89a d646457 018d89a d646457 018d89a 8bc16b1 63613eb 8bc16b1 63613eb 8bc16b1 63613eb 6a48422 63613eb 018d89a add8f10 018d89a add8f10 018d89a 63613eb 018d89a add8f10 018d89a add8f10 2100a52 add8f10 2100a52 add8f10 2100a52 add8f10 2100a52 8bc16b1 2100a52 add8f10 8bc16b1 2100a52 add8f10 2100a52 add8f10 018d89a 63613eb 8bc16b1 63613eb 8bc16b1 63613eb d646457 8bc16b1 9849e1c e122da3 63613eb 018d89a e122da3 018d89a 63613eb 018d89a 63613eb 018d89a 63613eb 018d89a 63613eb 018d89a 63613eb 018d89a 63613eb 9849e1c 018d89a 9849e1c 63613eb 9849e1c 018d89a 63613eb 018d89a 63613eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
import os
import time
import gradio as gr
from gradio.themes import Size, GoogleFont
import sys
import pandas as pd
import webbrowser
from marqo import Client
from PIL import Image
import urllib.request
from PIL import Image
import requests
import matplotlib.pyplot as plt
from pathlib import Path
from datetime import datetime
import time
import webbrowser
from transformers import CLIPProcessor, CLIPModel
# model = CLIPModel.from_pretrained("patrickjohncyh/fashion-clip")
# processor = CLIPProcessor.from_pretrained("patrickjohncyh/fashion-clip")
static_dir = Path('./static')
static_dir.mkdir(parents=True, exist_ok=True)
# client = Client("http://ec2-54-220-125-165.eu-west-1.compute.amazonaws.com:8882")
# client = Client()
# index_name = "new_look_expanded_dresses"
# device = "cpu"
class Client_Settings():
def __init__(self):
self.client = Client()
self.index_name = "new_look_expanded_dresses"
self.device = "cpu"
def conn_to_local(self):
self.client = Client()
def conn_to_server(self, url):
self.client = Client(url)
def set_index_name(self, new_index_name):
self.index_name = new_index_name
def set_device(self, new_device):
self.device = new_device
client_obj = Client_Settings()
# client_obj.conn_to_local()
client_obj.conn_to_server("http://ec2-54-220-125-165.eu-west-1.compute.amazonaws.com:8882")
client_obj.set_index_name("new_look_expanded_dresses")
client_obj.set_device("cuda")
# Create custom Color objects for our primary, secondary, and neutral colors
primary_color = gr.themes.colors.slate
secondary_color = gr.themes.colors.rose
neutral_color = gr.themes.colors.stone # Assuming black for text
# Set the sizes
spacing_size = gr.themes.sizes.spacing_md
radius_size = gr.themes.sizes.radius_md
text_size = gr.themes.sizes.text_md
# Set the fonts
font = GoogleFont("Source Sans Pro")
font_mono = GoogleFont("IBM Plex Mono")
# Create the theme
theme = gr.themes.Base(
primary_hue=primary_color,
secondary_hue=secondary_color,
neutral_hue=neutral_color,
spacing_size=spacing_size,
radius_size=radius_size,
text_size=text_size,
font=font,
font_mono=font_mono
)
def filter_by_column(dataset, search_term, column_name) -> pd.DataFrame:
return dataset[dataset[column_name].str.contains(search_term)]
def dedup_by(dataset, column_name) -> pd.DataFrame:
return dataset.drop_duplicates(subset=[column_name])
def drop_secondary_images(dataset) -> pd.DataFrame:
dataset.image = dataset.primary_image
return dataset.drop_duplicates(subset=['primary_image'])
def dataset_to_gallery(dataset: pd.DataFrame, _score=None) -> list:
# convert to list of tuples
new_df = dataset[['_id', 'image', 'name', 'colour_code']].copy()
if type(_score) != type(pd.Series()):
new_df['name_code_combined'] = new_df['name'] + '@@' + new_df['colour_code'].astype(str) + '@@' + new_df['image'].astype(str) + '@@' + new_df['_id'].astype(str)
else:
new_df['name_code_combined'] = (_score).map('{:,.4f}'.format).astype(str) + '@@' + new_df['name'] + '@@' + new_df['colour_code'].astype(str) + '@@' + new_df['image'].astype(str) + '@@' + new_df['_id'].astype(str)
final_df = new_df[['image', 'name_code_combined']]
items = final_df.to_records(index=False).tolist()
return items
def get_items_from_dataset(start_index=0, end_index=50, dataset=pd.read_json('{}')) -> pd.DataFrame:
df = dataset.sort_values(by=['best_seller_score'], ascending=False)
return df[start_index:end_index]
# def return_page(page, dataset: pd.DataFrame):
# start_index = page * result_per_page
# end_index = (page + 1) * result_per_page
# df = get_items_from_dataset(start_index, end_index, dataset)
# return dataset_to_gallery(dedup_by(df, 'colour_code'))
def start_page(num_results=50):
result = client_obj.client.index(client_obj.index_name).search("Dress", score_modifiers = {
"add_to_score": [{"field_name": "best_seller_score","weight": 5}],
}, searchable_attributes=['image'], device=client_obj.device, limit=num_results)
imgs = [r for r in result["hits"]]
return return_results_page(imgs)
def return_results_page(results_list: list):
df = pd.DataFrame(results_list)
df_unique = drop_secondary_images(df)
return dataset_to_gallery(df_unique, df_unique['_score'])
def return_item(combined) -> list:
colour_code = combined.split("@@")[2]
result = client_obj.client.index(client_obj.index_name).search("", filter_string = "colour_code:" + str(colour_code), searchable_attributes=['image'], device=client_obj.device)
imgs = [r for r in result["hits"]]
df = pd.DataFrame(imgs)
return dataset_to_gallery(df), imgs[0]["description_total"], imgs[0]["url"]
def return_specific_item(combined) -> list:
_id = combined.split("@@")[3]
result = client_obj.client.index(client_obj.index_name).search("", filter_string = "_id:" + str(_id), searchable_attributes=['image'], device=client_obj.device)
imgs = [r for r in result["hits"]]
print(imgs)
df = pd.DataFrame(imgs)
return dataset_to_gallery(df)[0][0]
### Load local
def load_image(image_input):
image_input.save("../../../Documents/images/img_path.jpg")
os.system('docker cp "../../../Documents/images/img_path.jpg" marqo:"/images/images/"')
def search_images(query, best_seller_score_weight):
result = client_obj.client.index(client_obj.index_name).search(query, score_modifiers = {
"add_to_score": [{"field_name": "best_seller_score","weight": best_seller_score_weight/1000}],
}, searchable_attributes=['image'], device=client_obj.device, limit=40)
imgs = [r for r in result["hits"]]
return imgs
# def get_labels_probs(labels, image):
# inputs = processor(text=labels, images=image, return_tensors="pt", padding=True)
# outputs = model(**inputs)
# logits_per_image = outputs.logits_per_image # this is the image-text similarity score
# probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
# return probs.tolist()[0]
def get_bar_plot(labels, probs):
fig, ax = plt.subplots()
bar_container = ax.bar(labels, probs)
ax.set(ylabel='frequency', title='Labels probabilities\n', ylim=(0, 1))
ax.bar_label(bar_container, fmt='{:,.4f}')
return fig
css = """
.gradio-container {background-color: beige}
button.gallery-item {background-color: grey}
"""
# .label {background-color: grey; width: 80px}
# h1 {background-color: grey; width: 180px}
with gr.Blocks(theme=theme, title="New Look", css=css) as demo:
gr.Markdown(
"""
<div style="vertical-align: middle">
<div style="float: left">
<img src="https://1000logos.net/wp-content/uploads/2021/05/New-Look-logo.png" alt=""
width="250" height="250">
</div>
</div>
""")
with gr.Tab(label="Search for images"):
with gr.Row():
with gr.Column(scale=3):
text_input = gr.Text(label="Search with text:")
text_relevance = gr.Slider(label="Text search relevance", minimum = -5, maximum = 5, value = 1, step = 1)
text_input_1 = gr.Text(label="Search with text:", visible=False)
text_relevance_1 = gr.Slider(label="Text search relevance", minimum = -5, maximum = 5, value = 1, step = 1, visible=False)
more_text_search = gr.Button(value="More text fields")
text_expanded = gr.State(value=False)
with gr.Column(scale=3):
best_seller_score_weight = gr.Slider(label = "Best seller relevance", minimum=-1, maximum=1, value=0, step=0.01)
search_button = gr.Button(value="Search")
with gr.Column(scale=2):
image_input = gr.Image(type="pil", label="Search with image")
image_path = gr.State(visible=False)
image_relevance = gr.Slider(label="Image search relevance", minimum = -5, maximum = 5, value = 1, step = 1)
with gr.Row():
with gr.Column(scale=3):
images_gallery = gr.Gallery(value=start_page(), columns=4,
allow_preview=False, show_label=False, object_fit="contain")
with gr.Column():
detail_gallery = gr.Gallery(value=[], columns=2, allow_preview=False, show_label=False, rows=1,
height="400",object_fit="contain")
image_description = gr.Text(label="Description")
product_link = gr.State()
page = gr.HTML()
def on_new_text_box(more_text_search): # SelectData is a subclass of EventData
if more_text_search == "More text fields":
return gr.update(visible=True, interactive=True), gr.update(visible=True, interactive=True), gr.update(value="Hide extra text box")
else:
return gr.update(value="", visible=False, interactive=False), gr.update(visible=False, interactive=False), gr.update(value="More text fields")
def on_focus(evt: gr.SelectData): # SelectData is a subclass of EventData
item = return_item(evt.value)
return item[0], item[1], item[2], gr.update(value="<a href= " + item[2] + " target='_blank'> Go to product page </a>")
def on_new_image_to_search(images, evt: gr.SelectData): # SelectData is a subclass of EventData
return return_specific_item(evt.value)
# def on_go_to_product_page(product_link):
# # try:
# return '<button onclick="window.location.href='+ product_link +';"> Click Here </button>'
more_text_search.click(on_new_text_box, more_text_search, [text_input_1, text_relevance_1, more_text_search])
images_gallery.select(on_focus, None, [detail_gallery, image_description, product_link, page])
detail_gallery.select(on_new_image_to_search, detail_gallery, image_input)
# button_go_to_page.click(on_go_to_product_page, product_link, page)
# with gr.Tab(label="Search for images"):
# labels_input = gr.Text(label="List of labels")
# gr.Examples(
# ["shirt, dress, shoe",
# "short_sleeve, long_sleeve, three_quarter_sleeve, sleeveless, bell_sleeve"],
# labels_input)
# with gr.Row():
# image_labels_input = gr.Image(type="pil", label="Image to compute")
# bar_plot = gr.Plot()
# with gr.Row():
# gr.Examples(
# ["https://media2.newlookassets.com/i/newlook/869030934/womens/clothing/dresses/khaki-utility-mini-shirt-dress.jpg?strip=true&qlt=50&w=1400",
# "https://media3.newlookassets.com/i/newlook/872692409/womens/clothing/dresses/black-floral-lace-trim-mini-dress.jpg?strip=true&qlt=50&w=1400"],
# image_labels_input)
# gr.Markdown()
# compute_button = gr.Button(value="Compute")
# response_labels = gr.Text()
with gr.Tab(label="Choose dataset"):
gr.Markdown("# Choose Dataset")
with gr.Row():
list_datasets = gr.Dropdown(["New Look Dresses", "New Look All"], label="Available datasets", value="New Look Dresses")
gr.Markdown()
gr.Markdown()
with gr.Row():
select_dataset_button = gr.Button("Select")
gr.Markdown()
gr.Markdown()
def on_change_dataset(choice):
index_name = ""
if choice == "New Look Dresses":
index_name = "new_look_expanded_dresses"
elif choice == "New Look All":
index_name = "new_look_expanded_all"
print("Dataset selected: " + index_name)
client_obj.set_index_name(index_name)
time.sleep(0.5)
return choice
select_dataset_button.click(on_change_dataset, list_datasets, list_datasets)
def load(image_input):
if image_input != None:
file_name = f"image_to_search.jpg"
# file_path = static_dir / file_name
file_path = "static/" + file_name
print(file_path)
image_input.save(file_path)
return "https://minderalabs-newlook.hf.space/file=" + file_path
else:
return ""
def search(text_input, text_input_1, image_input, image_path, text_relevance, text_relevance_1, image_relevance, best_seller_score_weight):
# all_queries = [text_input, text_input_1, image_input]
all_queries = [text_input, text_input_1, image_path]
print(all_queries)
all_queries_relevance = [text_relevance, text_relevance_1, image_relevance]
print(all_queries_relevance)
query_is_none = [True if (query == None or query == "") else False for query in all_queries]
print(query_is_none)
if sum([1 if query == False else 0 for query in query_is_none]) == 0:
empty_response = [None] * 5
empty_response.append("")
return []
elif sum([1 if query == False else 0 for query in query_is_none]) == 1:
for i in range(3):
if query_is_none[i] == False:
### Code to run locally
# if i == 2:
# load_image(image_input)
# query = "/images/images/img_path.jpg"
# break
###
query = all_queries[i]
break
else:
query = dict()
for i in range(3):
if query_is_none[i] == False:
### Code to run locally
# if i == 2:
# load_image(image_input)
# query["/images/images/img_path.jpg"] = image_relevance
# continue
###
query[all_queries[i]] = all_queries_relevance[i]
# if text_input == "" and image_input == None:
# empty_response = [None] * 5
# empty_response.append("")
# return empty_response
# if text_input == "":
# load_image(image_input)
# query = "/images/images/img_path.jpg"
# # query = image_path
# elif image_input == None:
# query = text_input
# else:
# query = dict()
# load_image(image_input)
# query["/images/images/img_path.jpg"] = image_relevance
# # query[image_path] = image_relevance
# query[text_input] = text_relevance
list_image_results = []
response = search_images(query, best_seller_score_weight)
# for i in range(len(response)):
# urllib.request.urlretrieve(response[i]["primary_image"], "img_res_path_" + str(i) + ".jpg")
# list_image_results.append(Image.open(r"img_res_path_" + str(i) + r".jpg"))
return return_results_page(response)
# def get_labels(labels_input, image_labels_input):
# labels_probs = get_labels_probs(labels_input.split(","), image_labels_input)
# bar_plot = get_bar_plot(labels_input.split(","), labels_probs)
# return bar_plot, labels_probs
# search_button.click(
# search, [text_input, text_input_1, image_input, image_path, text_relevance, text_relevance_1, image_relevance, best_seller_score_weight], images_gallery
# )
search_button.click(
load, image_input, image_path
).then(
search, [text_input, text_input_1, image_input, image_path, text_relevance, text_relevance_1, image_relevance, best_seller_score_weight], [images_gallery]
)
# compute_button.click(
# get_labels, [labels_input, image_labels_input], [bar_plot, response_labels]
# )
demo.queue()
demo.launch() |