File size: 8,307 Bytes
15952ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4b15d9c3",
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import matplotlib.pyplot as plt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4e9129a5",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Do not try to mask unused channels to optimize the code: we have tried it and it was in fact COUNTER-PRODUCTIVE.\n",
    "# Python is the bottleneck with 8 channels, not numpy, and it does not matter whether we use all 8 or 0 channels.\n",
    "\n",
    "def shift_numpy(arr, num, fill_value=np.nan):\n",
    "    result = np.empty_like(arr)\n",
    "    if num > 0:\n",
    "        result[:num] = fill_value\n",
    "        result[num:] = arr[:-num]\n",
    "    elif num < 0:\n",
    "        result[num:] = fill_value\n",
    "        result[:num] = arr[-num:]\n",
    "    else:\n",
    "        result[:] = arr\n",
    "    return result\n",
    "\n",
    "\n",
    "class FIR:\n",
    "    def __init__(self, nb_channels, coefficients, buffer=None):\n",
    "        \n",
    "        self.coefficients = np.expand_dims(np.array(coefficients), axis=1)\n",
    "        self.taps = len(self.coefficients)\n",
    "        self.nb_channels = nb_channels\n",
    "        self.buffer = np.array(z) if buffer is not None else np.zeros((self.taps, self.nb_channels))\n",
    "    \n",
    "    def filter(self, x):\n",
    "        self.buffer = shift_numpy(self.buffer, 1, x)\n",
    "        filtered = np.sum(self.buffer * self.coefficients, axis=0)\n",
    "        return filtered\n",
    "\n",
    "    \n",
    "class FilterPipeline:\n",
    "    def __init__(self, nb_channels, power_line_fq=60):\n",
    "        self.nb_channels = nb_channels\n",
    "        assert power_line_fq in [50, 60], f\"The only supported power line frequencies are 50Hz and 60Hz\"\n",
    "        if power_line_fq == 60:\n",
    "            self.notch_coeff1 = -0.12478308884588535\n",
    "            self.notch_coeff2 = 0.98729186796473023\n",
    "            self.notch_coeff3 = 0.99364593398236511\n",
    "            self.notch_coeff4 = -0.12478308884588535\n",
    "            self.notch_coeff5 = 0.99364593398236511\n",
    "        else:\n",
    "            self.notch_coeff1 = -0.61410695998423581\n",
    "            self.notch_coeff2 =  0.98729186796473023\n",
    "            self.notch_coeff3 = 0.99364593398236511\n",
    "            self.notch_coeff4 = -0.61410695998423581\n",
    "            self.notch_coeff5 = 0.99364593398236511\n",
    "        self.dfs = [np.zeros(self.nb_channels), np.zeros(self.nb_channels)]\n",
    "        \n",
    "        self.moving_average = None\n",
    "        self.moving_variance = np.zeros(self.nb_channels)\n",
    "        self.ALPHA_AVG = 0.1\n",
    "        self.ALPHA_STD = 0.001\n",
    "        self.EPSILON = 0.000001\n",
    "            \n",
    "        self.fir_30_coef = [\n",
    "            0.001623780150148094927192721215192250384,\n",
    "            0.014988684599373741992978104065059596905,\n",
    "            0.021287595318265635502275046064823982306,\n",
    "            0.007349500393709578957568417933998716762,\n",
    "            -0.025127515717112181709014251396183681209,\n",
    "            -0.052210507359822452833064687638398027048,\n",
    "            -0.039273839505489904766477593511808663607,\n",
    "            0.033021568427940004020193498490698402748,\n",
    "            0.147606943281569008563636202779889572412,\n",
    "            0.254000252034505602516389899392379447818,\n",
    "            0.297330876398883392486283128164359368384,\n",
    "            0.254000252034505602516389899392379447818,\n",
    "            0.147606943281569008563636202779889572412,\n",
    "            0.033021568427940004020193498490698402748,\n",
    "            -0.039273839505489904766477593511808663607,\n",
    "            -0.052210507359822452833064687638398027048,\n",
    "            -0.025127515717112181709014251396183681209,\n",
    "            0.007349500393709578957568417933998716762,\n",
    "            0.021287595318265635502275046064823982306,\n",
    "            0.014988684599373741992978104065059596905,\n",
    "            0.001623780150148094927192721215192250384]\n",
    "        self.fir = FIR(self.nb_channels, self.fir_30_coef)\n",
    "        \n",
    "    def filter(self, value):\n",
    "        \"\"\"\n",
    "        value: a numpy array of shape (data series, channels)\n",
    "        \"\"\"\n",
    "        for i, x in enumerate(value):  # loop over the data series\n",
    "            # FIR:\n",
    "            x = self.fir.filter(x)\n",
    "            # notch:\n",
    "            denAccum = (x - self.notch_coeff1 * self.dfs[0]) - self.notch_coeff2 * self.dfs[1]\n",
    "            x = (self.notch_coeff3 * denAccum + self.notch_coeff4 * self.dfs[0]) + self.notch_coeff5 * self.dfs[1]\n",
    "            self.dfs[1] = self.dfs[0]\n",
    "            self.dfs[0] = denAccum\n",
    "            # standardization:\n",
    "            if self.moving_average is not None:\n",
    "                delta = x - self.moving_average\n",
    "                self.moving_average = self.moving_average + self.ALPHA_AVG * delta\n",
    "                self.moving_variance = (1 - self.ALPHA_STD) * (self.moving_variance + self.ALPHA_STD * delta**2)\n",
    "                moving_std = np.sqrt(self.moving_variance)\n",
    "                x = (x - self.moving_average) / (moving_std + self.EPSILON)\n",
    "            else:\n",
    "                self.moving_average = x\n",
    "            value[i] = x\n",
    "        return value"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "80fc186e",
   "metadata": {},
   "outputs": [],
   "source": [
    "duration = 1\n",
    "fsample = 250\n",
    "f1 = 15\n",
    "f2 = 50\n",
    "f3 = 60\n",
    "f4 = 100\n",
    "f5 = 70\n",
    "f6 = 80\n",
    "f7 = 90\n",
    "scale = 4.0e-5\n",
    "\n",
    "w1 = 2*np.pi*f1\n",
    "w2 = 2*np.pi*f2\n",
    "w3 = 2*np.pi*f3\n",
    "w4 = 2*np.pi*f4\n",
    "w5 = 2*np.pi*f5\n",
    "w6 = 2*np.pi*f6\n",
    "w7 = 2*np.pi*f7\n",
    "nb_samples = int(duration*fsample)\n",
    "\n",
    "sig1 = np.array([np.sin(w1*i/fsample) for i in range(nb_samples)])\n",
    "sig2 = np.array([np.sin(w2*i/fsample) for i in range(nb_samples)])\n",
    "sig3 = np.array([np.sin(w3*i/fsample) for i in range(nb_samples)])\n",
    "sig4 = np.array([np.sin(w4*i/fsample) for i in range(nb_samples)])\n",
    "sig5 = np.array([np.sin(w5*i/fsample) for i in range(nb_samples)])\n",
    "sig6 = np.array([np.sin(w6*i/fsample) for i in range(nb_samples)])\n",
    "sig7 = np.array([np.sin(w7*i/fsample) for i in range(nb_samples)])\n",
    "sig8 = sig1 + sig2 + sig3 + sig4 + sig5 + sig6 + sig7\n",
    "\n",
    "v = np.array([sig1, sig2, sig3, sig4, sig5, sig6, sig7, sig8]).T * scale\n",
    "\n",
    "mask = [0,0,0,0,0,0,0,1]\n",
    "\n",
    "v.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b974a851",
   "metadata": {},
   "outputs": [],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "\n",
    "plt.figure(figsize=(20,5))\n",
    "plt.plot(v[:, 7])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d2b7145c",
   "metadata": {},
   "outputs": [],
   "source": [
    "import time\n",
    "print(mask)\n",
    "fp = FilterPipeline(nb_channels=8, power_line_fq=60)\n",
    "\n",
    "ts = time.time()\n",
    "v = fp.filter(v)\n",
    "print(time.time() - ts)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "70235c0a",
   "metadata": {},
   "outputs": [],
   "source": [
    "plt.figure(figsize=(20,10))\n",
    "plt.plot(v[:, 7])"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}