File size: 3,945 Bytes
a3c36fd
 
7653009
4207871
a3c36fd
b7541ec
 
d98720a
4207871
d710548
 
 
 
 
 
 
30bb5b3
e57f927
bc45490
 
 
 
 
 
 
30bb5b3
 
 
 
 
 
bc45490
b7541ec
 
 
 
 
 
 
 
 
 
 
 
 
 
bc45490
9cc983b
 
 
d71af86
9cc983b
 
d71af86
 
9cc983b
d71af86
a3c36fd
 
d71af86
 
a3c36fd
 
 
d710548
 
 
 
6ae8dd5
d710548
 
 
 
 
 
 
 
a3c36fd
 
bc45490
 
 
e57f927
bc45490
 
 
 
 
 
 
d98720a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc45490
b7541ec
 
 
 
e57f927
 
bc45490
 
 
3cd0d7b
bc45490
7e5c64b
 
 
bc45490
 
33354da
bc45490
 
7e5c64b
bc45490
 
33354da
bc45490
7e5c64b
bc45490
 
33354da
bc45490
 
7e5c64b
33354da
 
7e5c64b
bc45490
 
4207871
bc45490
4207871
a3c36fd
bc45490
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import io
import gradio as gr
import sys
import os
import tempfile
import numpy as np
import pandas as pd
import traceback as tb

empty_df = pd.DataFrame(
    {
        "equation": [],
        "loss": [],
        "complexity": [],
    }
)
Main = None

def greet(
    file_obj: tempfile._TemporaryFileWrapper,
    col_to_fit: str,
    niterations: int,
    binary_operators: list,
    unary_operators: list,
):
    global Main
    if Main is not None:
        return (
            empty_df,
            "Refresh the page to run with a different configuration."
        )
    if col_to_fit == "":
        return (
            empty_df,
            "Please enter a column to predict!",
        )
    if len(binary_operators) == 0 and len(unary_operators) == 0:
        return (
            empty_df,
            "Please select at least one operator!",
        )
    if file_obj is None:
        return (
            empty_df,
            "Please upload a CSV file!",
        )
    niterations = int(niterations)

    # Install Julia:
    os.system(
        """if [ ! -d "/home/user/julia" ]; then
        wget https://julialang-s3.julialang.org/bin/linux/x64/1.7/julia-1.7.3-linux-x86_64.tar.gz
        tar zxvf julia-1.7.3-linux-x86_64.tar.gz
        mkdir /home/user/julia
        mv julia-1.7.3/* /home/user/julia/
    fi""")
    os.environ["PATH"] += ":/home/user/julia/bin/"
    # Need to install PySR in separate python instance:
    os.system(
        """if [ ! -d "/home/user/.julia/environments/pysr-0.9.3" ]; then
        export PATH="$PATH:/home/user/julia/bin/"
        python -c 'import pysr; pysr.install()'
    fi"""
    )

    import pysr
    try:
        from julia.api import JuliaInfo
        info = JuliaInfo.load(julia="/home/user/julia/bin/julia")
        from julia import Main as _Main
        pysr.sr.Main = _Main
    except Exception as e:
        error_message = tb.format_exc()
        return (
            empty_df,
            error_message,
        )
    from pysr import PySRRegressor

    df = pd.read_csv(file_obj.name)
    y = np.array(df[col_to_fit])
    X = df.drop([col_to_fit], axis=1)

    model = PySRRegressor(
        update=False,
        temp_equation_file=True,
        niterations=niterations,
        binary_operators=binary_operators,
        unary_operators=unary_operators,
    )
    try:
        model.fit(X, y)
    # Catch all error:
    except Exception as e:
        error_traceback = tb.format_exc()
        if "CalledProcessError" in error_traceback:
            return (
                empty_df,
                "Could not initialize Julia. Error message:\n"
                + error_traceback,
            )
        else:
            return (
                empty_df,
                "Failed due to error:\n" + error_traceback,
            )

    df = model.equations_[["equation", "loss", "complexity"]]
    # Convert all columns to string type:
    df = df.astype(str)
    return df, "Successful."


def main():
    demo = gr.Interface(
        fn=greet,
        description="PySR Demo",
        inputs=[
            gr.inputs.File(label="Upload a CSV File"),
            gr.inputs.Textbox(label="Column to Predict", placeholder="y"),
            gr.inputs.Slider(
                minimum=1,
                maximum=1000,
                default=40,
                label="Number of iterations",
            ),
            gr.inputs.CheckboxGroup(
                choices=["+", "-", "*", "/", "^"],
                label="Binary Operators",
                default=["+", "-", "*", "/"],
            ),
            gr.inputs.CheckboxGroup(
                choices=["sin", "cos", "exp", "log"],
                label="Unary Operators",
                default=[],
            ),
        ],
        outputs=[
            "dataframe",
            gr.outputs.Textbox(label="Error Log"),
        ],
    )
    # Add file to the demo:

    demo.launch()


if __name__ == "__main__":
    main()