File size: 17,958 Bytes
cfca8a4
69c3f28
cfca8a4
9b9db9e
a3a2513
 
5908dc9
 
bf37f2a
 
 
 
 
 
5908dc9
 
 
 
 
 
bf37f2a
5908dc9
 
 
 
 
 
 
 
 
 
 
 
 
bf37f2a
5908dc9
 
 
bf37f2a
 
 
5908dc9
 
 
 
 
 
cfca8a4
ecc6ae8
 
121e6ac
90049bc
 
a1e142a
 
78cf882
7b7f087
78cf882
 
 
 
7b7f087
 
 
78cf882
 
 
 
 
 
 
 
 
 
 
4854265
5908dc9
7b7f087
 
a95ae71
7b7f087
683071f
319103f
7f5b38a
2ca2654
 
964082a
ecc6ae8
8cfda07
cfca8a4
333f394
 
 
 
 
85d18bf
 
 
012bfcc
8cfda07
 
ecc6ae8
121e6ac
012bfcc
333f394
 
012bfcc
333f394
012bfcc
333f394
012bfcc
 
 
 
333f394
012bfcc
333f394
012bfcc
 
 
 
 
333f394
012bfcc
78cf882
34fadcf
 
 
012bfcc
2e104cc
012bfcc
 
 
333f394
012bfcc
333f394
012bfcc
333f394
012bfcc
333f394
012bfcc
 
 
 
683071f
 
 
 
 
7f5b38a
 
2ca2654
 
 
 
964082a
 
 
 
8cfda07
012bfcc
333f394
c27a9c8
a3a2513
ecc6ae8
 
319103f
 
333f394
85d18bf
 
 
 
964082a
 
aadb328
29edd56
aadb328
 
 
 
 
 
964082a
7f5b38a
aadb328
964082a
 
 
 
 
 
 
 
121e6ac
 
aadb328
4ff119b
a3a2513
 
 
 
 
 
b66d8de
a3a2513
a95ae71
a1e142a
 
 
 
 
a95ae71
a3a2513
 
 
b66d8de
cfca8a4
ea010a7
0c0aff7
aadb328
 
 
 
 
 
 
 
 
 
1fca015
aadb328
 
 
 
 
 
 
226786e
 
 
 
 
 
319103f
683071f
226786e
 
 
 
 
ecc6ae8
121e6ac
78cf882
35b5720
 
c28a133
2ca2654
 
964082a
226786e
 
 
 
2e104cc
226786e
 
 
 
 
cfca8a4
 
da5e3e7
 
 
 
a3a2513
 
226786e
c28a133
 
 
 
 
 
cfca8a4
964082a
7f5b38a
 
 
0c0aff7
cfca8a4
ea4213e
0c0aff7
cfca8a4
 
ecc6ae8
 
 
7e735f6
ecc6ae8
 
 
0c0aff7
a3a2513
bf37f2a
 
ecc6ae8
a3a2513
4854265
bf37f2a
 
 
 
 
 
 
 
 
 
 
 
 
 
e8639b3
 
 
 
bf37f2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4854265
bf37f2a
4854265
 
5908dc9
 
 
 
 
 
 
bf37f2a
 
 
 
 
 
964082a
bf37f2a
c253783
bf37f2a
 
5908dc9
 
 
 
 
 
 
 
 
 
59cf3d0
5908dc9
 
 
 
 
 
 
 
a3a2513
bf37f2a
964082a
bf37f2a
a8ee367
 
 
bf37f2a
 
 
 
 
a8ee367
 
 
bf37f2a
 
 
 
 
a8ee367
 
 
bf37f2a
 
 
 
 
a8ee367
 
 
bf37f2a
 
 
 
59cf3d0
a8ee367
 
 
bf37f2a
 
964082a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import os
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from collections import namedtuple
import pathlib
import numpy as np
import pandas as pd
import sympy
from sympy import sympify, Symbol, lambdify
import subprocess

global_equation_file = 'hall_of_fame.csv'
global_n_features = None
global_variable_names = []
global_extra_sympy_mappings = {}

sympy_mappings = {
    'div':  lambda x, y : x/y,
    'mult': lambda x, y : x*y,
    'plus': lambda x, y : x + y,
    'neg':  lambda x    : -x,
    'pow':  lambda x, y : sympy.sign(x)*abs(x)**y,
    'cos':  lambda x    : sympy.cos(x),
    'sin':  lambda x    : sympy.sin(x),
    'tan':  lambda x    : sympy.tan(x),
    'cosh': lambda x    : sympy.cosh(x),
    'sinh': lambda x    : sympy.sinh(x),
    'tanh': lambda x    : sympy.tanh(x),
    'exp':  lambda x    : sympy.exp(x),
    'acos': lambda x    : sympy.acos(x),
    'asin': lambda x    : sympy.asin(x),
    'atan': lambda x    : sympy.atan(x),
    'acosh':lambda x    : sympy.acosh(x),
    'asinh':lambda x    : sympy.asinh(x),
    'atanh':lambda x    : sympy.atanh(x),
    'abs':  lambda x    : abs(x),
    'mod':  lambda x, y : sympy.Mod(x, y),
    'erf':  lambda x    : sympy.erf(x),
    'erfc': lambda x    : sympy.erfc(x),
    'logm': lambda x    : sympy.log(abs(x)),
    'logm10':lambda x    : sympy.log10(abs(x)),
    'logm2': lambda x    : sympy.log2(abs(x)),
    'log1p': lambda x    : sympy.log(x + 1),
    'floor': lambda x    : sympy.floor(x),
    'ceil': lambda x    : sympy.ceil(x),
    'sign': lambda x    : sympy.sign(x),
    'round': lambda x    : sympy.round(x),
}

def pysr(X=None, y=None, weights=None,
            procs=4,
            populations=None,
            niterations=100,
            ncyclesperiteration=300,
            binary_operators=["plus", "mult"],
            unary_operators=["cos", "exp", "sin"],
            alpha=0.1,
            annealing=True,
            fractionReplaced=0.10,
            fractionReplacedHof=0.10,
            npop=1000,
            parsimony=1e-4,
            migration=True,
            hofMigration=True,
            shouldOptimizeConstants=True,
            topn=10,
            weightAddNode=1,
            weightInsertNode=3,
            weightDeleteNode=3,
            weightDoNothing=1,
            weightMutateConstant=10,
            weightMutateOperator=1,
            weightRandomize=1,
            weightSimplify=0.01,
            perturbationFactor=1.0,
            nrestarts=3,
            timeout=None,
            extra_sympy_mappings={},
            equation_file='hall_of_fame.csv',
            test='simple1',
            verbosity=1e9,
            maxsize=20,
            fast_cycle=False,
            maxdepth=None,
            variable_names=[],
            batching=False,
            batchSize=50,
            select_k_features=None,
            threads=None, #deprecated
            julia_optimization=3,
        ):
    """Run symbolic regression to fit f(X[i, :]) ~ y[i] for all i.
    Note: most default parameters have been tuned over several example
    equations, but you should adjust `threads`, `niterations`,
    `binary_operators`, `unary_operators` to your requirements.

    :param X: np.ndarray or pandas.DataFrame, 2D array. Rows are examples,
        columns are features. If pandas DataFrame, the columns are used
        for variable names (so make sure they don't contain spaces).
    :param y: np.ndarray, 1D array. Rows are examples.
    :param weights: np.ndarray, 1D array. Each row is how to weight the
        mean-square-error loss on weights.
    :param procs: int, Number of processes (=number of populations running).
    :param populations: int, Number of populations running; by default=procs.
    :param niterations: int, Number of iterations of the algorithm to run. The best
        equations are printed, and migrate between populations, at the
        end of each.
    :param ncyclesperiteration: int, Number of total mutations to run, per 10
        samples of the population, per iteration.
    :param binary_operators: list, List of strings giving the binary operators
        in Julia's Base, or in `operator.jl`.
    :param unary_operators: list, Same but for operators taking a single `Float32`.
    :param alpha: float, Initial temperature.
    :param annealing: bool, Whether to use annealing. You should (and it is default).
    :param fractionReplaced: float, How much of population to replace with migrating
        equations from other populations.
    :param fractionReplacedHof: float, How much of population to replace with migrating
        equations from hall of fame.
    :param npop: int, Number of individuals in each population
    :param parsimony: float, Multiplicative factor for how much to punish complexity.
    :param migration: bool, Whether to migrate.
    :param hofMigration: bool, Whether to have the hall of fame migrate.
    :param shouldOptimizeConstants: bool, Whether to numerically optimize
        constants (Nelder-Mead/Newton) at the end of each iteration.
    :param topn: int, How many top individuals migrate from each population.
    :param nrestarts: int, Number of times to restart the constant optimizer
    :param perturbationFactor: float, Constants are perturbed by a max
        factor of (perturbationFactor*T + 1). Either multiplied by this
        or divided by this.
    :param weightAddNode: float, Relative likelihood for mutation to add a node
    :param weightInsertNode: float, Relative likelihood for mutation to insert a node
    :param weightDeleteNode: float, Relative likelihood for mutation to delete a node
    :param weightDoNothing: float, Relative likelihood for mutation to leave the individual
    :param weightMutateConstant: float, Relative likelihood for mutation to change
        the constant slightly in a random direction.
    :param weightMutateOperator: float, Relative likelihood for mutation to swap
        an operator.
    :param weightRandomize: float, Relative likelihood for mutation to completely
        delete and then randomly generate the equation
    :param weightSimplify: float, Relative likelihood for mutation to simplify
        constant parts by evaluation
    :param timeout: float, Time in seconds to timeout search
    :param equation_file: str, Where to save the files (.csv separated by |)
    :param test: str, What test to run, if X,y not passed.
    :param maxsize: int, Max size of an equation.
    :param maxdepth: int, Max depth of an equation. You can use both maxsize and maxdepth.
        maxdepth is by default set to = maxsize, which means that it is redundant.
    :param fast_cycle: bool, (experimental) - batch over population subsamples. This
        is a slightly different algorithm than regularized evolution, but does cycles
        15% faster. May be algorithmically less efficient.
    :param variable_names: list, a list of names for the variables, other
        than "x0", "x1", etc.
    :param batching: bool, whether to compare population members on small batches
        during evolution. Still uses full dataset for comparing against
        hall of fame.
    :param batchSize: int, the amount of data to use if doing batching.
    :param select_k_features: (None, int), whether to run feature selection in
        Python using random forests, before passing to the symbolic regression
        code. None means no feature selection; an int means select that many
        features.
    :param julia_optimization: int, Optimization level (0, 1, 2, 3)
    :returns: pd.DataFrame, Results dataframe, giving complexity, MSE, and equations
        (as strings).

    """
    if threads is not None:
        raise ValueError("The threads kwarg is deprecated. Use procs.")
    if maxdepth is None:
        maxdepth = maxsize

    if isinstance(X, pd.DataFrame):
        variable_names = list(X.columns)
        X = np.array(X)

    use_custom_variable_names = (len(variable_names) != 0)

    # Check for potential errors before they happen
    assert len(unary_operators) + len(binary_operators) > 0
    assert len(X.shape) == 2
    assert len(y.shape) == 1
    assert X.shape[0] == y.shape[0]
    if weights is not None:
        assert len(weights.shape) == 1
        assert X.shape[0] == weights.shape[0]
    if use_custom_variable_names:
        assert len(variable_names) == X.shape[1]

    if select_k_features is not None:
        selection = run_feature_selection(X, y, select_k_features)
        print(f"Using features {selection}")
        X = X[:, selection]

        if use_custom_variable_names:
            variable_names = variable_names[selection]

    if populations is None:
        populations = procs

    rand_string = f'{"".join([str(np.random.rand())[2] for i in range(20)])}'

    if isinstance(binary_operators, str): binary_operators = [binary_operators]
    if isinstance(unary_operators, str): unary_operators = [unary_operators]

    if X is None:
        if test == 'simple1':
            eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**2.5 + 5*np.cos(X[:, 3]) - 5"
        elif test == 'simple2':
            eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**3.5 + 1/(np.abs(X[:, 0])+1)"
        elif test == 'simple3':
            eval_str = "np.exp(X[:, 0]/2) + 12.0 + np.log(np.abs(X[:, 0])*10 + 1)"
        elif test == 'simple4':
            eval_str = "1.0 + 3*X[:, 0]**2 - 0.5*X[:, 0]**3 + 0.1*X[:, 0]**4"
        elif test == 'simple5':
            eval_str = "(np.exp(X[:, 3]) + 3)/(np.abs(X[:, 1]) + np.cos(X[:, 0]) + 1.1)"

        X = np.random.randn(100, 5)*3
        y = eval(eval_str)
        print("Running on", eval_str)

    pkg_directory = '/'.join(__file__.split('/')[:-2] + ['julia'])

    def_hyperparams = ""

    # Add pre-defined functions to Julia
    for op_list in [binary_operators, unary_operators]:
        for i in range(len(op_list)):
            op = op_list[i]
            if '(' not in op:
                continue

            def_hyperparams += op + "\n"
            # Cut off from the first non-alphanumeric char:
            first_non_char = [
                    j for j in range(len(op))
                    if not (op[j].isalpha() or op[j].isdigit())][0]
            function_name = op[:first_non_char]
            op_list[i] = function_name

    def_hyperparams += f"""include("{pkg_directory}/operators.jl")
const binops = {'[' + ', '.join(binary_operators) + ']'}
const unaops = {'[' + ', '.join(unary_operators) + ']'}
const ns=10;
const parsimony = {parsimony:f}f0
const alpha = {alpha:f}f0
const maxsize = {maxsize:d}
const maxdepth = {maxdepth:d}
const fast_cycle = {'true' if fast_cycle else 'false'}
const migration = {'true' if migration else 'false'}
const hofMigration = {'true' if hofMigration else 'false'}
const fractionReplacedHof = {fractionReplacedHof}f0
const shouldOptimizeConstants = {'true' if shouldOptimizeConstants else 'false'}
const hofFile = "{equation_file}"
const nprocs = {procs:d}
const npopulations = {populations:d}
const nrestarts = {nrestarts:d}
const perturbationFactor = {perturbationFactor:f}f0
const annealing = {"true" if annealing else "false"}
const weighted = {"true" if weights is not None else "false"}
const batching = {"true" if batching else "false"}
const batchSize = {min([batchSize, len(X)]) if batching else len(X):d}
const useVarMap = {"true" if use_custom_variable_names else "false"}
const mutationWeights = [
    {weightMutateConstant:f},
    {weightMutateOperator:f},
    {weightAddNode:f},
    {weightInsertNode:f},
    {weightDeleteNode:f},
    {weightSimplify:f},
    {weightRandomize:f},
    {weightDoNothing:f}
]
    """

    if X.shape[1] == 1:
        X_str = 'transpose([' + str(X.tolist()).replace(']', '').replace(',', '').replace('[', '') + '])'
    else:
        X_str = str(X.tolist()).replace('],', '];').replace(',', '')
    y_str = str(y.tolist())

    def_datasets = """const X = convert(Array{Float32, 2}, """f"{X_str})""""
const y = convert(Array{Float32, 1}, """f"{y_str})"

    if weights is not None:
        weight_str = str(weights.tolist())
        def_datasets += """
const weights = convert(Array{Float32, 1}, """f"{weight_str})"

    if use_custom_variable_names:
        def_hyperparams += f"""
const varMap = {'["' + '", "'.join(variable_names) + '"]'}"""

    with open(f'/tmp/.hyperparams_{rand_string}.jl', 'w') as f:
        print(def_hyperparams, file=f)

    with open(f'/tmp/.dataset_{rand_string}.jl', 'w') as f:
        print(def_datasets, file=f)

    with open(f'/tmp/.runfile_{rand_string}.jl', 'w') as f:
        print(f'@everywhere include("/tmp/.hyperparams_{rand_string}.jl")', file=f)
        print(f'@everywhere include("/tmp/.dataset_{rand_string}.jl")', file=f)
        print(f'@everywhere include("{pkg_directory}/sr.jl")', file=f)
        print(f'fullRun({niterations:d}, npop={npop:d}, ncyclesperiteration={ncyclesperiteration:d}, fractionReplaced={fractionReplaced:f}f0, verbosity=round(Int32, {verbosity:f}), topn={topn:d})', file=f)
        print(f'rmprocs(nprocs)', file=f)


    command = [
        f'julia', f'-O{julia_optimization:d}',
        f'-p', f'{procs}',
        f'/tmp/.runfile_{rand_string}.jl',
        ]
    if timeout is not None:
        command = [f'timeout', f'{timeout}'] + command

    global global_n_features
    global global_equation_file
    global global_variable_names
    global global_extra_sympy_mappings

    global_n_features = X.shape[1]
    global_equation_file = equation_file
    global_variable_names = variable_names
    global_extra_sympy_mappings = extra_sympy_mappings

    print("Running on", ' '.join(command))
    process = subprocess.Popen(command)
    try:
        process.wait()
    except KeyboardInterrupt:
        process.kill()

    return get_hof()


def run_feature_selection(X, y, select_k_features):
    """Use a gradient boosting tree regressor as a proxy for finding
        the k most important features in X, returning indices for those
        features as output."""

    from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
    from sklearn.feature_selection import SelectFromModel, SelectKBest

    clf = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, max_depth=1, random_state=0, loss='ls') #RandomForestRegressor()
    clf.fit(X, y)
    selector = SelectFromModel(clf, threshold=-np.inf,
            max_features=select_k_features, prefit=True)
    return selector.get_support(indices=True)

def get_hof(equation_file=None, n_features=None, variable_names=None, extra_sympy_mappings=None):
    """Get the equations from a hall of fame file. If no arguments
    entered, the ones used previously from a call to PySR will be used."""

    global global_n_features
    global global_equation_file
    global global_variable_names
    global global_extra_sympy_mappings

    if equation_file is None: equation_file = global_equation_file
    if n_features is None: n_features = global_n_features
    if variable_names is None: variable_names = global_variable_names
    if extra_sympy_mappings is None: extra_sympy_mappings = global_extra_sympy_mappings

    try:
        output = pd.read_csv(equation_file + '.bkup', sep="|")
    except FileNotFoundError:
        print("Couldn't find equation file!")
        return pd.DataFrame()

    scores = []
    lastMSE = None
    lastComplexity = 0
    sympy_format = []
    lambda_format = []
    use_custom_variable_names = (len(variable_names) != 0)
    local_sympy_mappings = {
            **extra_sympy_mappings,
            **sympy_mappings
    }

    if use_custom_variable_names:
        sympy_symbols = [sympy.Symbol(variable_names[i]) for i in range(n_features)]
    else:
        sympy_symbols = [sympy.Symbol('x%d'%i) for i in range(n_features)]

    for i in range(len(output)):
        eqn = sympify(output.loc[i, 'Equation'], locals=local_sympy_mappings)
        sympy_format.append(eqn)
        lambda_format.append(lambdify(sympy_symbols, eqn))
        curMSE = output.loc[i, 'MSE']
        curComplexity = output.loc[i, 'Complexity']

        if lastMSE is None:
            cur_score = 0.0
        else:
            cur_score = - np.log(curMSE/lastMSE)/(curComplexity - lastComplexity)

        scores.append(cur_score)
        lastMSE = curMSE
        lastComplexity = curComplexity

    output['score'] = np.array(scores)
    output['sympy_format'] = sympy_format
    output['lambda_format'] = lambda_format

    return output[['Complexity', 'MSE', 'score', 'Equation', 'sympy_format', 'lambda_format']]

def best_row(equations=None):
    """Return the best row of a hall of fame file using the score column.
    By default this uses the last equation file.
    """
    if equations is None: equations = get_hof()
    best_idx = np.argmax(equations['score'])
    return equations.iloc[best_idx]

def best_tex(equations=None):
    """Return the equation with the best score, in latex format
    By default this uses the last equation file.
    """
    if equations is None: equations = get_hof()
    best_sympy = best_row(equations)['sympy_format']
    return sympy.latex(best_sympy.simplify())

def best(equations=None):
    """Return the equation with the best score, in latex format
    By default this uses the last equation file.
    """
    if equations is None: equations = get_hof()
    best_sympy = best_row(equations)['sympy_format']
    return best_sympy.simplify()

def best_tex(equations=None):
    """Return the equation with the best score, in latex format
    By default this uses the last equation file.
    """
    if equations is None: equations = get_hof()
    best_sympy = best_row(equations)['sympy_format']
    return sympy.latex(best_sympy.simplify())

def best_callable(equations=None):
    """Return the equation with the best score, in callable format
    By default this uses the last equation file.
    """
    if equations is None: equations = get_hof()
    return best_row(equations)['lambda_format']