File size: 5,835 Bytes
ac2928c
7e72d81
271a473
f2e0980
d974a2c
 
 
 
ac2928c
 
 
 
 
271a473
 
ac2928c
 
271a473
ac2928c
 
271a473
c88fbe0
ac2928c
 
 
 
 
 
 
 
 
 
 
 
 
 
271a473
c88fbe0
ac2928c
 
671509b
ac2928c
 
 
271a473
 
ac2928c
 
 
 
 
 
 
 
 
 
c88fbe0
ac2928c
 
 
 
 
 
 
 
d974a2c
ac2928c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
271a473
ac2928c
 
 
 
 
b6ed59b
271a473
 
 
e2a7e95
 
b6ed59b
e2a7e95
b6ed59b
 
 
 
271a473
d974a2c
b6ed59b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d974a2c
59765a8
b6ed59b
59765a8
 
 
 
 
 
 
 
 
 
 
 
 
b6ed59b
59765a8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import numpy as np
import csv
import traceback
from .sr import pysr, best
from pathlib import Path

PKG_DIR = Path(__file__).parents[1]
FEYNMAN_DATASET = PKG_DIR / "datasets" / "FeynmanEquations.csv"

class Problem:
    """
    Problem API to work with PySR.

    Has attributes: X, y as pysr accepts, form which is a string representing the correct equation and variable_names

    Should be able to call pysr(problem.X, problem.y, var_names=problem.var_names) and have it work
    """
    def __init__(self, X, y, form=None, variable_names=None):
        self.X = X
        self.y = y
        self.form = form
        self.variable_names = variable_names


class FeynmanProblem(Problem):
    """
    Stores the data for the problems from the 100 Feynman Equations on Physics.
    This is the benchmark used in the AI Feynman Paper
    """
    def __init__(self, row, gen=False, dp=500):
        """
        row: a row read as a dict from the FeynmanEquations dataset provided in the datasets folder of the repo
        gen: If true the problem will have dp X and y values randomly generated else they will be None
        """
        self.eq_id      = row['Filename']
        self.n_vars     = int(row['# variables'])
        super(FeynmanProblem, self).__init__(None, None, form=row['Formula'],
                                             variable_names=[row[f'v{i + 1}_name'] for i in range(self.n_vars)])
        self.low        = [float(row[f'v{i+1}_low'])   for i in range(self.n_vars)]
        self.high       = [float(row[f'v{i+1}_high'])  for i in range(self.n_vars)]
        self.dp         = dp
        if gen:
            self.X = np.random.uniform(0.01, 25, size=(self.dp, self.n_vars))
            d = {}
            for var in range(len(self.variable_names)):
                d[self.variable_names[var]] = self.X[:, var]
            d['exp'] = np.exp
            d['sqrt'] = np.sqrt
            d['pi'] = np.pi
            d['cos'] = np.cos
            d['sin'] = np.sin
            d['tan'] = np.tan
            d['tanh'] = np.tanh
            d['ln']   = np.log
            d['log'] = np.log # Quite sure the Feynman dataset has no base 10 logs
            d['arcsin'] = np.arcsin
            self.y = eval(self.form,d)
        return

    def __str__(self):
        return f"Feynman Equation: {self.eq_id}|Form: {self.form}"

    def __repr__(self):
        return str(self)

    def mk_problems(first=100, gen=False, dp=500, data_dir=FEYNMAN_DATASET):
        """

        first: the first "first" equations from the dataset will be made into problems
        data_dir: the path pointing to the Feynman Equations csv
        returns: list of FeynmanProblems
        """
        ret = []
        with open(data_dir) as csvfile:
            ind = 0
            reader = csv.DictReader(csvfile)
            for i, row in enumerate(reader):
                if ind > first:
                    break
                if row['Filename'] == '': continue
                try:
                    p = FeynmanProblem(row, gen=gen, dp=dp)
                    ret.append(p)
                except Exception as e:
                    traceback.print_exc()
                    print(f"FAILED ON ROW {i}")
                ind += 1
        return ret


def run_on_problem(problem, verbosity=0, multiprocessing=True):
    """
    Takes in a problem and returns a tuple: (equations, best predicted equation, actual equation)
    """
    from time import time
    starting = time()
    equations = pysr(problem.X, problem.y, variable_names=problem.variable_names, verbosity=verbosity,)
    timing = time()-starting
    others = {"time": timing, "problem": problem}
    if not multiprocessing:
        others['equations'] = equations
    return str(best(equations)), problem.form, others

def do_feynman_experiments_parallel(first=100, verbosity=0, dp=500, output_file_path="FeynmanExperiment.csv", data_dir=FEYNMAN_DATASET):
    import multiprocessing as mp
    from tqdm import tqdm
    problems = FeynmanProblem.mk_problems(first=first, gen=True, dp=dp, data_dir=data_dir)
    ids = []
    predictions = []
    true_equations = []
    time_takens = []
    pool = mp.Pool()
    results = []
    with tqdm(total=len(problems)) as pbar:
        for i, res in enumerate(pool.imap(run_on_problem, problems)):
            results.append(res)
            pbar.update()
    for res in results:
        prediction, true_equation, others = res
        problem = others['problem']
        ids.append(problem.eq_id)
        predictions.append(prediction)
        true_equations.append(true_equation)
        time_takens.append(others['time'])
    with open(output_file_path, 'a') as f:
        writer = csv.writer(f, delimiter=',')
        writer.writerow(['ID', 'Predicted', 'True', 'Time'])
        for i in range(len(ids)):
            writer.writerow([ids[i], predictions[i], true_equations[i], time_takens[i]])
    return

def do_feynman_experiments(first=100, verbosity=0, dp=500, output_file_path="FeynmanExperiment.csv", data_dir=FEYNMAN_DATASET):
    from tqdm import tqdm

    problems = FeynmanProblem.mk_problems(first=first, gen=True, dp=dp, data_dir=data_dir)
    indx = range(len(problems))
    ids = []
    predictions = []
    true_equations = []
    time_takens = []
    for problem in tqdm(problems):
        prediction, true_equation, others = run_on_problem(problem, verbosity)
        ids.append(problem.eq_id)
        predictions.append(prediction)
        true_equations.append(true_equation)
        time_takens.append(others['time'])
    with open(output_file_path, 'a') as f:
        writer = csv.writer(f, delimiter=',')
        writer.writerow(['ID', 'Predicted', 'True', 'Time'])
        for i in range(len(ids)):
            writer.writerow([ids[i], predictions[i], true_equations[i], time_takens[i]])
    return