File size: 6,377 Bytes
723dbce
e84bed4
2ceb526
 
68b3673
 
2ceb526
68b3673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2a7a62
 
 
68b3673
2ceb526
fb950bb
e0c68fc
2ceb526
 
 
144e3ff
 
 
17c9b1a
 
d0788ef
17c9b1a
7d4300a
 
 
e0c68fc
 
99fff5c
 
 
 
 
 
 
 
e0c68fc
 
 
 
 
 
5bb2875
 
 
 
 
2ceb526
fb950bb
 
 
 
 
 
7d4300a
fb950bb
 
 
 
 
 
 
 
 
 
7d4300a
fb950bb
 
 
 
 
e0c68fc
2ceb526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb950bb
 
 
 
 
 
2ceb526
e0c68fc
 
 
7d4300a
2ceb526
8c55475
 
55e3b83
2ceb526
 
 
 
44216ab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import numpy as np  # noqa: F401
import sympy  # type: ignore

# Special since need to reduce arguments.
MUL = 0
ADD = 1

_jnp_func_lookup = {
    sympy.Mul: MUL,
    sympy.Add: ADD,
    sympy.div: "jnp.div",
    sympy.Abs: "jnp.abs",
    sympy.sign: "jnp.sign",
    # Note: May raise error for ints.
    sympy.ceiling: "jnp.ceil",
    sympy.floor: "jnp.floor",
    sympy.log: "jnp.log",
    sympy.exp: "jnp.exp",
    sympy.sqrt: "jnp.sqrt",
    sympy.cos: "jnp.cos",
    sympy.acos: "jnp.acos",
    sympy.sin: "jnp.sin",
    sympy.asin: "jnp.asin",
    sympy.tan: "jnp.tan",
    sympy.atan: "jnp.atan",
    sympy.atan2: "jnp.atan2",
    # Note: Also may give NaN for complex results.
    sympy.cosh: "jnp.cosh",
    sympy.acosh: "jnp.acosh",
    sympy.sinh: "jnp.sinh",
    sympy.asinh: "jnp.asinh",
    sympy.tanh: "jnp.tanh",
    sympy.atanh: "jnp.atanh",
    sympy.Pow: "jnp.power",
    sympy.re: "jnp.real",
    sympy.im: "jnp.imag",
    sympy.arg: "jnp.angle",
    # Note: May raise error for ints and complexes
    sympy.erf: "jsp.erf",
    sympy.erfc: "jsp.erfc",
    sympy.LessThan: "jnp.less",
    sympy.GreaterThan: "jnp.greater",
    sympy.And: "jnp.logical_and",
    sympy.Or: "jnp.logical_or",
    sympy.Not: "jnp.logical_not",
    sympy.Max: "jnp.max",
    sympy.Min: "jnp.min",
    sympy.Mod: "jnp.mod",
    sympy.Heaviside: "jnp.heaviside",
    sympy.core.numbers.Half: "(lambda: 0.5)",
    sympy.core.numbers.One: "(lambda: 1.0)",
}


def sympy2jaxtext(expr, parameters, symbols_in, extra_jax_mappings=None):
    if issubclass(expr.func, sympy.Float):
        parameters.append(float(expr))
        return f"parameters[{len(parameters) - 1}]"
    elif issubclass(expr.func, sympy.Rational) or issubclass(
        expr.func, sympy.NumberSymbol
    ):
        return f"{float(expr)}"
    elif issubclass(expr.func, sympy.Integer):
        return f"{int(expr)}"
    elif issubclass(expr.func, sympy.Symbol):
        return (
            f"X[:, {[i for i in range(len(symbols_in)) if symbols_in[i] == expr][0]}]"
        )
    if extra_jax_mappings is None:
        extra_jax_mappings = {}
    try:
        _func = {**_jnp_func_lookup, **extra_jax_mappings}[expr.func]
    except KeyError:
        raise KeyError(
            f"Function {expr.func} was not found in JAX function mappings."
            "Please add it to extra_jax_mappings in the format, e.g., "
            "{sympy.sqrt: 'jnp.sqrt'}."
        )
    args = [
        sympy2jaxtext(
            arg, parameters, symbols_in, extra_jax_mappings=extra_jax_mappings
        )
        for arg in expr.args
    ]
    if _func == MUL:
        return " * ".join(["(" + arg + ")" for arg in args])
    if _func == ADD:
        return " + ".join(["(" + arg + ")" for arg in args])
    return f'{_func}({", ".join(args)})'


jax_initialized = False
jax = None
jnp = None
jsp = None


def _initialize_jax():
    global jax_initialized
    global jax
    global jnp
    global jsp

    if not jax_initialized:
        import jax as _jax
        from jax import numpy as _jnp
        from jax.scipy import special as _jsp

        jax = _jax
        jnp = _jnp
        jsp = _jsp


def sympy2jax(expression, symbols_in, selection=None, extra_jax_mappings=None):
    """Returns a function f and its parameters;
    the function takes an input matrix, and a list of arguments:
            f(X, parameters)
    where the parameters appear in the JAX equation.

    # Examples:

        Let's create a function in SymPy:
        ```python
        x, y = symbols('x y')
        cosx = 1.0 * sympy.cos(x) + 3.2 * y
        ```
        Let's get the JAX version. We pass the equation, and
        the symbols required.
        ```python
        f, params = sympy2jax(cosx, [x, y])
        ```
        The order you supply the symbols is the same order
        you should supply the features when calling
        the function `f` (shape `[nrows, nfeatures]`).
        In this case, features=2 for x and y.
        The `params` in this case will be
        `jnp.array([1.0, 3.2])`. You pass these parameters
        when calling the function, which will let you change them
        and take gradients.

        Let's generate some JAX data to pass:
        ```python
        key = random.PRNGKey(0)
        X = random.normal(key, (10, 2))
        ```

        We can call the function with:
        ```python
        f(X, params)

        #> DeviceArray([-2.6080756 ,  0.72633684, -6.7557726 , -0.2963162 ,
        #                6.6014843 ,  5.032483  , -0.810931  ,  4.2520013 ,
        #                3.5427954 , -2.7479894 ], dtype=float32)
        ```

        We can take gradients with respect
        to the parameters for each row with JAX
        gradient parameters now:
        ```python
        jac_f = jax.jacobian(f, argnums=1)
        jac_f(X, params)

        #> DeviceArray([[ 0.49364874, -0.9692889 ],
        #               [ 0.8283714 , -0.0318858 ],
        #               [-0.7447336 , -1.8784496 ],
        #               [ 0.70755106, -0.3137085 ],
        #               [ 0.944834  ,  1.767703  ],
        #               [ 0.51673377,  1.4111717 ],
        #               [ 0.87347716, -0.52637756],
        #               [ 0.8760679 ,  1.0549792 ],
        #               [ 0.9961824 ,  0.79581654],
        #               [-0.88465923, -0.5822907 ]], dtype=float32)
        ```

        We can also JIT-compile our function:
        ```python
        compiled_f = jax.jit(f)
        compiled_f(X, params)

        #> DeviceArray([-2.6080756 ,  0.72633684, -6.7557726 , -0.2963162 ,
        #                6.6014843 ,  5.032483  , -0.810931  ,  4.2520013 ,
        #                3.5427954 , -2.7479894 ], dtype=float32)
        ```
    """
    _initialize_jax()
    global jax_initialized
    global jax
    global jnp
    global jsp

    parameters = []
    functional_form_text = sympy2jaxtext(
        expression, parameters, symbols_in, extra_jax_mappings
    )
    hash_string = "A_" + str(abs(hash(str(expression) + str(symbols_in))))
    text = f"def {hash_string}(X, parameters):\n"
    if selection is not None:
        # Impose the feature selection:
        text += f"    X = X[:, {list(selection)}]\n"
    text += "    return "
    text += functional_form_text
    ldict = {}
    exec(text, globals(), ldict)
    return ldict[hash_string], jnp.array(parameters)