Spaces:
Running
Running
File size: 6,447 Bytes
9fa2182 a2492c3 9fa2182 967d63f 84b46ac 9fa2182 0cd448a fd28328 a2492c3 fd28328 06338fc fd28328 a2492c3 fd28328 a2492c3 fd28328 a2492c3 0cd448a a2492c3 fd28328 0cd448a a2492c3 0cd448a 519fcb9 a206d6a 9fa2182 a206d6a 9fa2182 0cd448a a2492c3 0cd448a a2492c3 0cd448a 9fa2182 519fcb9 b58f1db 9fa2182 a2492c3 28639ea a2492c3 06338fc a2492c3 0cd448a a2492c3 0cd448a a2492c3 84b46ac a2492c3 28639ea 84b46ac 28639ea a2492c3 28639ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import multiprocessing as mp
import os
import tempfile
import time
from pathlib import Path
from typing import Callable
import pandas as pd
from data import generate_data, read_csv
from plots import plot_predictions
EMPTY_DF = lambda: pd.DataFrame(
{
"Equation": [],
"Loss": [],
"Complexity": [],
}
)
def pysr_fit(queue: mp.Queue, out_queue: mp.Queue):
import pysr
while True:
# Get the arguments from the queue, if available
args = queue.get()
if args is None:
break
X = args["X"]
y = args["y"]
kwargs = args["kwargs"]
model = pysr.PySRRegressor(
progress=False,
timeout_in_seconds=1000,
**kwargs,
)
model.fit(X, y)
out_queue.put(None)
def pysr_predict(queue: mp.Queue, out_queue: mp.Queue):
while True:
args = queue.get()
if args is None:
break
X = args["X"]
equation_file = str(args["equation_file"])
index = args["index"]
equation_file_pkl = equation_file.replace(".csv", ".pkl")
equation_file_bkup = equation_file + ".bkup"
equation_file_copy = equation_file.replace(".csv", "_copy.csv")
equation_file_pkl_copy = equation_file.replace(".csv", "_copy.pkl")
# TODO: See if there is way to get lock on file
os.system(f"cp {equation_file_bkup} {equation_file_copy}")
os.system(f"cp {equation_file_pkl} {equation_file_pkl_copy}")
# Note that we import pysr late in this process to avoid
# pre-compiling the code in two places at once
import pysr
try:
model = pysr.PySRRegressor.from_file(equation_file_pkl_copy, verbosity=0)
except pd.errors.EmptyDataError:
continue
ypred = model.predict(X, index)
# Rename the columns to uppercase
equations = model.equations_[["complexity", "loss", "equation"]].copy()
# Remove any row that has worse loss than previous row:
equations = equations[equations["loss"].cummin() == equations["loss"]]
# TODO: Why is this needed? Are rows not being removed?
equations.columns = ["Complexity", "Loss", "Equation"]
out_queue.put(dict(ypred=ypred, equations=equations))
class ProcessWrapper:
def __init__(self, target: Callable[[mp.Queue, mp.Queue], None]):
self.queue = mp.Queue(maxsize=1)
self.out_queue = mp.Queue(maxsize=1)
self.process = mp.Process(target=target, args=(self.queue, self.out_queue))
self.process.start()
PERSISTENT_WRITER = None
PERSISTENT_READER = None
def processing(
*,
file_input,
force_run,
test_equation,
num_points,
noise_level,
data_seed,
niterations,
maxsize,
binary_operators,
unary_operators,
plot_update_delay,
parsimony,
populations,
population_size,
ncycles_per_iteration,
elementwise_loss,
adaptive_parsimony_scaling,
optimizer_algorithm,
optimizer_iterations,
batching,
batch_size,
**kwargs,
):
"""Load data, then spawn a process to run the greet function."""
global PERSISTENT_WRITER
global PERSISTENT_READER
if PERSISTENT_WRITER is None:
print("Starting PySR fit process")
PERSISTENT_WRITER = ProcessWrapper(pysr_fit)
if PERSISTENT_READER is None:
print("Starting PySR predict process")
PERSISTENT_READER = ProcessWrapper(pysr_predict)
if file_input is not None:
try:
X, y = read_csv(file_input, force_run)
except ValueError as e:
return (EMPTY_DF(), plot_predictions([], []), str(e))
else:
X, y = generate_data(test_equation, num_points, noise_level, data_seed)
tmpdirname = tempfile.mkdtemp()
base = Path(tmpdirname)
equation_file = base / "hall_of_fame.csv"
# Check if queue is empty, if not, kill the process
# and start a new one
if not PERSISTENT_WRITER.queue.empty():
print("Restarting PySR fit process")
if PERSISTENT_WRITER.process.is_alive():
PERSISTENT_WRITER.process.terminate()
PERSISTENT_WRITER.process.join()
PERSISTENT_WRITER = ProcessWrapper(pysr_fit)
if not PERSISTENT_READER.queue.empty():
print("Restarting PySR predict process")
if PERSISTENT_READER.process.is_alive():
PERSISTENT_READER.process.terminate()
PERSISTENT_READER.process.join()
PERSISTENT_READER = ProcessWrapper(pysr_predict)
PERSISTENT_WRITER.queue.put(
dict(
X=X,
y=y,
kwargs=dict(
niterations=niterations,
maxsize=maxsize,
binary_operators=binary_operators,
unary_operators=unary_operators,
equation_file=equation_file,
parsimony=parsimony,
populations=populations,
population_size=population_size,
ncycles_per_iteration=ncycles_per_iteration,
elementwise_loss=elementwise_loss,
adaptive_parsimony_scaling=adaptive_parsimony_scaling,
optimizer_algorithm=optimizer_algorithm,
optimizer_iterations=optimizer_iterations,
batching=batching,
batch_size=batch_size,
),
)
)
last_yield = (
pd.DataFrame({"Complexity": [], "Loss": [], "Equation": []}),
plot_predictions([], []),
"Started!",
)
yield last_yield
while PERSISTENT_WRITER.out_queue.empty():
if (
equation_file.exists()
and Path(str(equation_file).replace(".csv", ".pkl")).exists()
):
# First, copy the file to a the copy file
PERSISTENT_READER.queue.put(
dict(
X=X,
equation_file=equation_file,
index=-1,
)
)
out = PERSISTENT_READER.out_queue.get()
predictions = out["ypred"]
equations = out["equations"]
last_yield = (
equations[["Complexity", "Loss", "Equation"]],
plot_predictions(y, predictions),
"Running...",
)
yield last_yield
time.sleep(0.1)
yield (*last_yield[:-1], "Done")
|