Spaces:
Running
Running
File size: 32,810 Bytes
2f296b6 9a7c989 2f38c9c bed9614 27fac96 af14165 b8a97f1 175b024 b8a97f1 9a5df63 7ed402e 05cf610 1adfa85 ad84a1c 2f296b6 179fef6 2f296b6 6033875 2f296b6 bed9614 7d4300a 2f38c9c 9a7c989 14e9a4b 4b56660 26a3c7f 5ada6c7 aaf3c83 14e9a4b ed35c4e 7d4300a 2f38c9c 4c9fe98 af14165 c7187a6 af14165 10ff16a 44aefe9 00875eb 8e088d6 6146f6b 4c9fe98 af14165 c7187a6 6146f6b af8d4da 1f3aace af8d4da 0445487 1f3aace af8d4da 81cfb5c af8d4da fd42a40 7d4300a af14165 1b17efe fd42a40 af14165 e0e2933 7d4300a bfb135a 4c9fe98 7d4300a af14165 c7187a6 2f38c9c c7187a6 af14165 ddb4d52 d9913e3 7a792a8 d85c1a5 ae0b11e ed35c4e 6a4fa2c 5af6354 6a4fa2c af14165 7d4300a 932dcf5 7d4300a d85c1a5 4c9fe98 7d4300a ae0b11e 6a4fa2c b293893 f5577ea b293893 50c7eff b293893 f5577ea b293893 6a4fa2c 775c667 ed35c4e a232b56 58834e8 a232b56 4c9fe98 a232b56 0020398 58834e8 0020398 7d4300a c7187a6 faa83d3 8cfda07 aa16a1e 03d5a42 0b521f3 81cfb5c 0b521f3 03d5a42 aa16a1e c7187a6 aa16a1e 0fba777 21d6b92 5750d1a ed35c4e af14165 ffd9cd1 932dcf5 27fac96 5750d1a 4c9fe98 5750d1a 27fac96 aaf3c83 af14165 5750d1a 50f37a0 ffd9cd1 ed35c4e ffd9cd1 ed35c4e ffd9cd1 ad8332d ffd9cd1 ed35c4e ffd9cd1 af14165 ffd9cd1 561e614 ffd9cd1 b13cd4f 4c9fe98 ffd9cd1 c7187a6 af14165 45d2b5f 1662e82 ffd9cd1 ed35c4e ffd9cd1 45d2b5f ffd9cd1 a190947 224f906 a190947 f266b70 a190947 f266b70 a190947 ccf71e9 593c674 ccf71e9 58e25a9 34f4e3f 58e25a9 ccf71e9 78cdb0e 34f4e3f 78cdb0e b53e7fa b8a97f1 34f4e3f b53e7fa 1adfa85 c6c8728 82b18ca 0dbee97 82b18ca 0dbee97 82b18ca c6c8728 1adfa85 fbb7cf7 7d4300a ec8124e 7d4300a c6c8728 c7187a6 f59f827 1adfa85 f59f827 1adfa85 a55fec0 1adfa85 f59f827 1adfa85 c7187a6 f5577ea 97e6589 175b024 97e6589 51a6b05 ed35c4e 51a6b05 ed35c4e 7d4300a 97e6589 ed35c4e 7d4300a 5fac847 7d4300a 5af6354 7d4300a c96b30c ef7a292 7d4300a 97e6589 7d4300a 1662e82 912de01 042b27f b8a97f1 912de01 ad84a1c c7187a6 912de01 c7187a6 ad84a1c 27fac96 ad84a1c 673c1d2 045bdb1 bfc129c e29a6da 2f296b6 673c1d2 857a9ad 2f296b6 be36d4a 2f296b6 be36d4a 4c9fe98 aaf3c83 857a9ad c7c02bf 857a9ad bd90cfc 857a9ad 2f296b6 be36d4a bd90cfc 2f296b6 c6c8728 3752ba6 c6c8728 44b5271 3752ba6 44b5271 c6c8728 fab6f87 c6c8728 fab6f87 c6c8728 44b5271 c6c8728 3ef2b32 c6c8728 3752ba6 c6c8728 44b5271 215a692 c6c8728 3ef2b32 c6c8728 3752ba6 44b5271 c6c8728 44b5271 c6c8728 3ef2b32 c6c8728 3752ba6 c6c8728 44b5271 215a692 c6c8728 3ef2b32 c6c8728 3752ba6 c6c8728 9a5df63 82b18ca 3ef2b32 82b18ca 3ef2b32 82b18ca 3752ba6 82b18ca 9a5df63 a628552 9a5df63 118c5f6 2a802ab 3ef2b32 2a802ab 3752ba6 2a802ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 |
import os
import traceback
import inspect
import unittest
import numpy as np
from sklearn import model_selection
from pysr import PySRRegressor
from pysr.sr import (
run_feature_selection,
_handle_feature_selection,
_csv_filename_to_pkl_filename,
idx_model_selection,
)
from pysr.export_latex import to_latex
from sklearn.utils.estimator_checks import check_estimator
import sympy
import pandas as pd
import warnings
import pickle as pkl
import tempfile
from pathlib import Path
DEFAULT_PARAMS = inspect.signature(PySRRegressor.__init__).parameters
DEFAULT_NITERATIONS = DEFAULT_PARAMS["niterations"].default
DEFAULT_POPULATIONS = DEFAULT_PARAMS["populations"].default
DEFAULT_NCYCLES = DEFAULT_PARAMS["ncyclesperiteration"].default
class TestPipeline(unittest.TestCase):
def setUp(self):
# Using inspect,
# get default niterations from PySRRegressor, and double them:
self.default_test_kwargs = dict(
progress=False,
model_selection="accuracy",
niterations=DEFAULT_NITERATIONS * 2,
populations=DEFAULT_POPULATIONS * 2,
temp_equation_file=True,
)
self.rstate = np.random.RandomState(0)
self.X = self.rstate.randn(100, 5)
def test_linear_relation(self):
y = self.X[:, 0]
model = PySRRegressor(
**self.default_test_kwargs,
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 1",
)
model.fit(self.X, y)
print(model.equations_)
self.assertLessEqual(model.get_best()["loss"], 1e-4)
def test_linear_relation_named(self):
y = self.X[:, 0]
model = PySRRegressor(
**self.default_test_kwargs,
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 1",
)
model.fit(self.X, y, variable_names=["c1", "c2", "c3", "c4", "c5"])
self.assertIn("c1", model.equations_.iloc[-1]["equation"])
def test_linear_relation_weighted(self):
y = self.X[:, 0]
weights = np.ones_like(y)
model = PySRRegressor(
**self.default_test_kwargs,
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 1",
)
model.fit(self.X, y, weights=weights)
print(model.equations_)
self.assertLessEqual(model.get_best()["loss"], 1e-4)
def test_multiprocessing(self):
y = self.X[:, 0]
model = PySRRegressor(
**self.default_test_kwargs,
procs=2,
multithreading=False,
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 1",
)
model.fit(self.X, y)
print(model.equations_)
self.assertLessEqual(model.equations_.iloc[-1]["loss"], 1e-4)
def test_high_precision_search(self):
y = 1.23456789 * self.X[:, 0]
model = PySRRegressor(
**self.default_test_kwargs,
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 3",
precision=64,
parsimony=0.01,
warm_start=True,
)
model.fit(self.X, y)
from pysr.sr import Main
# We should have that the model state is now a Float64 hof:
Main.test_state = model.raw_julia_state_
self.assertTrue(Main.eval("typeof(test_state[2]).parameters[1] == Float64"))
def test_multioutput_custom_operator_quiet_custom_complexity(self):
y = self.X[:, [0, 1]] ** 2
model = PySRRegressor(
unary_operators=["square_op(x) = x^2"],
extra_sympy_mappings={"square_op": lambda x: x**2},
complexity_of_operators={"square_op": 2, "plus": 1},
binary_operators=["plus"],
verbosity=0,
**self.default_test_kwargs,
procs=0,
# Test custom operators with constraints:
nested_constraints={"square_op": {"square_op": 3}},
constraints={"square_op": 10},
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 3",
)
model.fit(self.X, y)
equations = model.equations_
print(equations)
self.assertIn("square_op", model.equations_[0].iloc[-1]["equation"])
self.assertLessEqual(equations[0].iloc[-1]["loss"], 1e-4)
self.assertLessEqual(equations[1].iloc[-1]["loss"], 1e-4)
test_y1 = model.predict(self.X)
test_y2 = model.predict(self.X, index=[-1, -1])
mse1 = np.average((test_y1 - y) ** 2)
mse2 = np.average((test_y2 - y) ** 2)
self.assertLessEqual(mse1, 1e-4)
self.assertLessEqual(mse2, 1e-4)
bad_y = model.predict(self.X, index=[0, 0])
bad_mse = np.average((bad_y - y) ** 2)
self.assertGreater(bad_mse, 1e-4)
def test_multioutput_weighted_with_callable_temp_equation(self):
X = self.X.copy()
y = X[:, [0, 1]] ** 2
w = self.rstate.rand(*y.shape)
w[w < 0.5] = 0.0
w[w >= 0.5] = 1.0
# Double equation when weights are 0:
y = (2 - w) * y
# Thus, pysr needs to use the weights to find the right equation!
model = PySRRegressor(
unary_operators=["sq(x) = x^2"],
binary_operators=["plus"],
extra_sympy_mappings={"sq": lambda x: x**2},
**self.default_test_kwargs,
procs=0,
delete_tempfiles=False,
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 2",
)
model.fit(X.copy(), y, weights=w)
# These tests are flaky, so don't fail test:
try:
np.testing.assert_almost_equal(
model.predict(X.copy())[:, 0], X[:, 0] ** 2, decimal=3
)
except AssertionError:
print("Error in test_multioutput_weighted_with_callable_temp_equation")
print("Model equations: ", model.sympy()[0])
print("True equation: x0^2")
try:
np.testing.assert_almost_equal(
model.predict(X.copy())[:, 1], X[:, 1] ** 2, decimal=3
)
except AssertionError:
print("Error in test_multioutput_weighted_with_callable_temp_equation")
print("Model equations: ", model.sympy()[1])
print("True equation: x1^2")
def test_empty_operators_single_input_warm_start(self):
X = self.rstate.randn(100, 1)
y = X[:, 0] + 3.0
regressor = PySRRegressor(
unary_operators=[],
binary_operators=["plus"],
**self.default_test_kwargs,
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 3",
)
self.assertTrue("None" in regressor.__repr__())
regressor.fit(X, y)
self.assertTrue("None" not in regressor.__repr__())
self.assertTrue(">>>>" in regressor.__repr__())
self.assertLessEqual(regressor.equations_.iloc[-1]["loss"], 1e-4)
np.testing.assert_almost_equal(regressor.predict(X), y, decimal=1)
# Test if repeated fit works:
regressor.set_params(
niterations=1,
ncyclesperiteration=2,
warm_start=True,
early_stop_condition=None,
)
# Check that the the julia state is saved:
from pysr.sr import Main
# We should have that the model state is now a Float32 hof:
Main.test_state = regressor.raw_julia_state_
self.assertTrue(Main.eval("typeof(test_state[2]).parameters[1] == Float32"))
# This should exit almost immediately, and use the old equations
regressor.fit(X, y)
self.assertLessEqual(regressor.equations_.iloc[-1]["loss"], 1e-4)
np.testing.assert_almost_equal(regressor.predict(X), y, decimal=1)
# Tweak model selection:
regressor.set_params(model_selection="best")
self.assertEqual(regressor.get_params()["model_selection"], "best")
self.assertTrue("None" not in regressor.__repr__())
self.assertTrue(">>>>" in regressor.__repr__())
def test_warm_start_set_at_init(self):
# Smoke test for bug where warm_start=True is set at init
y = self.X[:, 0]
regressor = PySRRegressor(warm_start=True, max_evals=10)
regressor.fit(self.X, y)
def test_noisy(self):
y = self.X[:, [0, 1]] ** 2 + self.rstate.randn(self.X.shape[0], 1) * 0.05
model = PySRRegressor(
# Test that passing a single operator works:
unary_operators="sq(x) = x^2",
binary_operators="plus",
extra_sympy_mappings={"sq": lambda x: x**2},
**self.default_test_kwargs,
procs=0,
denoise=True,
early_stop_condition="stop_if(loss, complexity) = loss < 0.05 && complexity == 2",
)
# We expect in this case that the "best"
# equation should be the right one:
model.set_params(model_selection="best")
# Also try without a temp equation file:
model.set_params(temp_equation_file=False)
model.fit(self.X, y)
self.assertLessEqual(model.get_best()[1]["loss"], 1e-2)
self.assertLessEqual(model.get_best()[1]["loss"], 1e-2)
def test_pandas_resample_with_nested_constraints(self):
X = pd.DataFrame(
{
"T": self.rstate.randn(500),
"x": self.rstate.randn(500),
"unused_feature": self.rstate.randn(500),
}
)
true_fn = lambda x: np.array(x["T"] + x["x"] ** 2 + 1.323837)
y = true_fn(X)
noise = self.rstate.randn(500) * 0.01
y = y + noise
# We also test y as a pandas array:
y = pd.Series(y)
# Resampled array is a different order of features:
Xresampled = pd.DataFrame(
{
"unused_feature": self.rstate.randn(100),
"x": self.rstate.randn(100),
"T": self.rstate.randn(100),
}
)
model = PySRRegressor(
unary_operators=[],
binary_operators=["+", "*", "/", "-"],
**self.default_test_kwargs,
denoise=True,
nested_constraints={"/": {"+": 1, "-": 1}, "+": {"*": 4}},
early_stop_condition="stop_if(loss, complexity) = loss < 1e-3 && complexity == 7",
)
model.fit(X, y, Xresampled=Xresampled)
self.assertNotIn("unused_feature", model.latex())
self.assertIn("T", model.latex())
self.assertIn("x", model.latex())
self.assertLessEqual(model.get_best()["loss"], 1e-1)
fn = model.get_best()["lambda_format"]
X2 = pd.DataFrame(
{
"T": self.rstate.randn(100),
"unused_feature": self.rstate.randn(100),
"x": self.rstate.randn(100),
}
)
self.assertLess(np.average((fn(X2) - true_fn(X2)) ** 2), 1e-1)
self.assertLess(np.average((model.predict(X2) - true_fn(X2)) ** 2), 1e-1)
def test_high_dim_selection_early_stop(self):
X = pd.DataFrame({f"k{i}": self.rstate.randn(10000) for i in range(10)})
Xresampled = pd.DataFrame({f"k{i}": self.rstate.randn(100) for i in range(10)})
y = X["k7"] ** 2 + np.cos(X["k9"]) * 3
model = PySRRegressor(
unary_operators=["cos"],
select_k_features=3,
early_stop_condition=1e-4, # Stop once most accurate equation is <1e-4 MSE
maxsize=12,
**self.default_test_kwargs,
)
model.set_params(model_selection="accuracy")
model.fit(X, y, Xresampled=Xresampled)
self.assertLess(np.average((model.predict(X) - y) ** 2), 1e-4)
# Again, but with numpy arrays:
model.fit(X.values, y.values, Xresampled=Xresampled.values)
self.assertLess(np.average((model.predict(X.values) - y.values) ** 2), 1e-4)
def test_load_model(self):
"""See if we can load a ran model from the equation file."""
csv_file_data = """
Complexity,Loss,Equation
1,0.19951081,"1.9762075"
3,0.12717344,"(f0 + 1.4724599)"
4,0.104823045,"pow_abs(2.2683423, cos(f3))\""""
# Strip the indents:
csv_file_data = "\n".join([l.strip() for l in csv_file_data.split("\n")])
for from_backup in [False, True]:
rand_dir = Path(tempfile.mkdtemp())
equation_filename = str(rand_dir / "equation.csv")
with open(equation_filename + (".bkup" if from_backup else ""), "w") as f:
f.write(csv_file_data)
model = PySRRegressor.from_file(
equation_filename,
n_features_in=5,
feature_names_in=["f0", "f1", "f2", "f3", "f4"],
binary_operators=["+", "*", "/", "-", "^"],
unary_operators=["cos"],
)
X = self.rstate.rand(100, 5)
y_truth = 2.2683423 ** np.cos(X[:, 3])
y_test = model.predict(X, 2)
np.testing.assert_allclose(y_truth, y_test)
def test_load_model_simple(self):
# Test that we can simply load a model from its equation file.
y = self.X[:, [0, 1]] ** 2
model = PySRRegressor(
# Test that passing a single operator works:
unary_operators="sq(x) = x^2",
binary_operators="plus",
extra_sympy_mappings={"sq": lambda x: x**2},
**self.default_test_kwargs,
procs=0,
denoise=True,
early_stop_condition="stop_if(loss, complexity) = loss < 0.05 && complexity == 2",
)
rand_dir = Path(tempfile.mkdtemp())
equation_file = rand_dir / "equations.csv"
model.set_params(temp_equation_file=False)
model.set_params(equation_file=equation_file)
model.fit(self.X, y)
# lambda functions are removed from the pickling, so we need
# to pass it during the loading:
model2 = PySRRegressor.from_file(
model.equation_file_, extra_sympy_mappings={"sq": lambda x: x**2}
)
np.testing.assert_allclose(model.predict(self.X), model2.predict(self.X))
# Try again, but using only the pickle file:
for file_to_delete in [str(equation_file), str(equation_file) + ".bkup"]:
if os.path.exists(file_to_delete):
os.remove(file_to_delete)
pickle_file = rand_dir / "equations.pkl"
model3 = PySRRegressor.from_file(
model.equation_file_, extra_sympy_mappings={"sq": lambda x: x**2}
)
np.testing.assert_allclose(model.predict(self.X), model3.predict(self.X))
def manually_create_model(equations, feature_names=None):
if feature_names is None:
feature_names = ["x0", "x1"]
model = PySRRegressor(
progress=False,
niterations=1,
extra_sympy_mappings={},
output_jax_format=False,
model_selection="accuracy",
equation_file="equation_file.csv",
)
# Set up internal parameters as if it had been fitted:
if isinstance(equations, list):
# Multi-output.
model.equation_file_ = "equation_file.csv"
model.nout_ = len(equations)
model.selection_mask_ = None
model.feature_names_in_ = np.array(feature_names, dtype=object)
for i in range(model.nout_):
equations[i]["complexity loss equation".split(" ")].to_csv(
f"equation_file.csv.out{i+1}.bkup"
)
else:
model.equation_file_ = "equation_file.csv"
model.nout_ = 1
model.selection_mask_ = None
model.feature_names_in_ = np.array(feature_names, dtype=object)
equations["complexity loss equation".split(" ")].to_csv(
"equation_file.csv.bkup"
)
model.refresh()
return model
class TestBest(unittest.TestCase):
def setUp(self):
self.rstate = np.random.RandomState(0)
self.X = self.rstate.randn(10, 2)
self.y = np.cos(self.X[:, 0]) ** 2
equations = pd.DataFrame(
{
"equation": ["1.0", "cos(x0)", "square(cos(x0))"],
"loss": [1.0, 0.1, 1e-5],
"complexity": [1, 2, 3],
}
)
self.model = manually_create_model(equations)
self.equations_ = self.model.equations_
def test_best(self):
self.assertEqual(self.model.sympy(), sympy.cos(sympy.Symbol("x0")) ** 2)
def test_index_selection(self):
self.assertEqual(self.model.sympy(-1), sympy.cos(sympy.Symbol("x0")) ** 2)
self.assertEqual(self.model.sympy(2), sympy.cos(sympy.Symbol("x0")) ** 2)
self.assertEqual(self.model.sympy(1), sympy.cos(sympy.Symbol("x0")))
self.assertEqual(self.model.sympy(0), 1.0)
def test_best_tex(self):
self.assertEqual(self.model.latex(), "\\cos^{2}{\\left(x_{0} \\right)}")
def test_best_lambda(self):
X = self.X
y = self.y
for f in [self.model.predict, self.equations_.iloc[-1]["lambda_format"]]:
np.testing.assert_almost_equal(f(X), y, decimal=3)
def test_all_selection_strategies(self):
equations = pd.DataFrame(
dict(
loss=[1.0, 0.1, 0.01, 0.001 * 1.4, 0.001],
score=[0.5, 1.0, 0.5, 0.5, 0.3],
)
)
idx_accuracy = idx_model_selection(equations, "accuracy")
self.assertEqual(idx_accuracy, 4)
idx_best = idx_model_selection(equations, "best")
self.assertEqual(idx_best, 3)
idx_score = idx_model_selection(equations, "score")
self.assertEqual(idx_score, 1)
class TestFeatureSelection(unittest.TestCase):
def setUp(self):
self.rstate = np.random.RandomState(0)
def test_feature_selection(self):
X = self.rstate.randn(20000, 5)
y = X[:, 2] ** 2 + X[:, 3] ** 2
selected = run_feature_selection(X, y, select_k_features=2)
self.assertEqual(sorted(selected), [2, 3])
def test_feature_selection_handler(self):
X = self.rstate.randn(20000, 5)
y = X[:, 2] ** 2 + X[:, 3] ** 2
var_names = [f"x{i}" for i in range(5)]
selected_X, selection = _handle_feature_selection(
X,
select_k_features=2,
variable_names=var_names,
y=y,
)
self.assertTrue((2 in selection) and (3 in selection))
selected_var_names = [var_names[i] for i in selection]
self.assertEqual(set(selected_var_names), set("x2 x3".split(" ")))
np.testing.assert_array_equal(
np.sort(selected_X, axis=1), np.sort(X[:, [2, 3]], axis=1)
)
class TestMiscellaneous(unittest.TestCase):
"""Test miscellaneous functions."""
def test_csv_to_pkl_conversion(self):
"""Test that csv filename to pkl filename works as expected."""
tmpdir = Path(tempfile.mkdtemp())
equation_file = tmpdir / "equations.389479384.28378374.csv"
expected_pkl_file = tmpdir / "equations.389479384.28378374.pkl"
# First, test inputting the paths:
test_pkl_file = _csv_filename_to_pkl_filename(equation_file)
self.assertEqual(test_pkl_file, str(expected_pkl_file))
# Next, test inputting the strings.
test_pkl_file = _csv_filename_to_pkl_filename(str(equation_file))
self.assertEqual(test_pkl_file, str(expected_pkl_file))
def test_deprecation(self):
"""Ensure that deprecation works as expected.
This should give a warning, and sets the correct value.
"""
with self.assertWarns(FutureWarning):
model = PySRRegressor(fractionReplaced=0.2)
# This is a deprecated parameter, so we should get a warning.
# The correct value should be set:
self.assertEqual(model.fraction_replaced, 0.2)
def test_size_warning(self):
"""Ensure that a warning is given for a large input size."""
model = PySRRegressor()
X = np.random.randn(10001, 2)
y = np.random.randn(10001)
with warnings.catch_warnings():
warnings.simplefilter("error")
with self.assertRaises(Exception) as context:
model.fit(X, y)
self.assertIn("more than 10,000", str(context.exception))
def test_feature_warning(self):
"""Ensure that a warning is given for large number of features."""
model = PySRRegressor()
X = np.random.randn(100, 10)
y = np.random.randn(100)
with warnings.catch_warnings():
warnings.simplefilter("error")
with self.assertRaises(Exception) as context:
model.fit(X, y)
self.assertIn("with 10 features or more", str(context.exception))
def test_deterministic_warnings(self):
"""Ensure that warnings are given for determinism"""
model = PySRRegressor(random_state=0)
X = np.random.randn(100, 2)
y = np.random.randn(100)
with warnings.catch_warnings():
warnings.simplefilter("error")
with self.assertRaises(Exception) as context:
model.fit(X, y)
self.assertIn("`deterministic`", str(context.exception))
def test_deterministic_errors(self):
"""Setting deterministic without random_state should error"""
model = PySRRegressor(deterministic=True)
X = np.random.randn(100, 2)
y = np.random.randn(100)
with self.assertRaises(ValueError):
model.fit(X, y)
def test_extra_sympy_mappings_undefined(self):
"""extra_sympy_mappings=None errors for custom operators"""
model = PySRRegressor(unary_operators=["square2(x) = x^2"])
X = np.random.randn(100, 2)
y = np.random.randn(100)
with self.assertRaises(ValueError):
model.fit(X, y)
def test_sympy_function_fails_as_variable(self):
model = PySRRegressor()
X = np.random.randn(100, 2)
y = np.random.randn(100)
with self.assertRaises(ValueError):
model.fit(X, y, variable_names=["x1", "N"])
def test_pickle_with_temp_equation_file(self):
"""If we have a temporary equation file, unpickle the estimator."""
model = PySRRegressor(
populations=int(1 + DEFAULT_POPULATIONS / 5),
temp_equation_file=True,
procs=0,
multithreading=False,
)
nout = 3
X = np.random.randn(100, 2)
y = np.random.randn(100, nout)
model.fit(X, y)
contents = model.equation_file_contents_.copy()
y_predictions = model.predict(X)
equation_file_base = model.equation_file_
for i in range(1, nout + 1):
assert not os.path.exists(str(equation_file_base) + f".out{i}.bkup")
with tempfile.NamedTemporaryFile() as pickle_file:
pkl.dump(model, pickle_file)
pickle_file.seek(0)
model2 = pkl.load(pickle_file)
contents2 = model2.equation_file_contents_
cols_to_check = ["equation", "loss", "complexity"]
for frame1, frame2 in zip(contents, contents2):
pd.testing.assert_frame_equal(frame1[cols_to_check], frame2[cols_to_check])
y_predictions2 = model2.predict(X)
np.testing.assert_array_equal(y_predictions, y_predictions2)
def test_scikit_learn_compatibility(self):
"""Test PySRRegressor compatibility with scikit-learn."""
model = PySRRegressor(
niterations=int(1 + DEFAULT_NITERATIONS / 10),
populations=int(1 + DEFAULT_POPULATIONS / 3),
ncyclesperiteration=int(2 + DEFAULT_NCYCLES / 10),
verbosity=0,
progress=False,
random_state=0,
deterministic=True, # Deterministic as tests require this.
procs=0,
multithreading=False,
warm_start=False,
temp_equation_file=True,
) # Return early.
check_generator = check_estimator(model, generate_only=True)
exception_messages = []
for (_, check) in check_generator:
try:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
check(model)
print("Passed", check.func.__name__)
except Exception:
error_message = str(traceback.format_exc())
exception_messages.append(
f"{check.func.__name__}:\n" + error_message + "\n"
)
print("Failed", check.func.__name__, "with:")
# Add a leading tab to error message, which
# might be multi-line:
print("\n".join([(" " * 4) + row for row in error_message.split("\n")]))
# If any checks failed don't let the test pass.
self.assertEqual(len(exception_messages), 0)
TRUE_PREAMBLE = "\n".join(
[
r"\usepackage{breqn}",
r"\usepackage{booktabs}",
"",
"...",
"",
]
)
class TestLaTeXTable(unittest.TestCase):
def setUp(self):
equations = pd.DataFrame(
dict(
equation=["x0", "cos(x0)", "x0 + x1 - cos(x1 * x0)"],
loss=[1.052, 0.02315, 1.12347e-15],
complexity=[1, 2, 8],
)
)
self.model = manually_create_model(equations)
self.maxDiff = None
def create_true_latex(self, middle_part, include_score=False):
if include_score:
true_latex_table_str = r"""
\begin{table}[h]
\begin{center}
\begin{tabular}{@{}cccc@{}}
\toprule
Equation & Complexity & Loss & Score \\
\midrule"""
else:
true_latex_table_str = r"""
\begin{table}[h]
\begin{center}
\begin{tabular}{@{}ccc@{}}
\toprule
Equation & Complexity & Loss \\
\midrule"""
true_latex_table_str += middle_part
true_latex_table_str += r"""\bottomrule
\end{tabular}
\end{center}
\end{table}
"""
# First, remove empty lines:
true_latex_table_str = "\n".join(
[line.strip() for line in true_latex_table_str.split("\n") if len(line) > 0]
)
return true_latex_table_str.strip()
def test_simple_table(self):
latex_table_str = self.model.latex_table(
columns=["equation", "complexity", "loss"]
)
middle_part = r"""
$y = x_{0}$ & $1$ & $1.05$ \\
$y = \cos{\left(x_{0} \right)}$ & $2$ & $0.0232$ \\
$y = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.12 \cdot 10^{-15}$ \\
"""
true_latex_table_str = (
TRUE_PREAMBLE + "\n" + self.create_true_latex(middle_part)
)
self.assertEqual(latex_table_str, true_latex_table_str)
def test_other_precision(self):
latex_table_str = self.model.latex_table(
precision=5, columns=["equation", "complexity", "loss"]
)
middle_part = r"""
$y = x_{0}$ & $1$ & $1.0520$ \\
$y = \cos{\left(x_{0} \right)}$ & $2$ & $0.023150$ \\
$y = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.1235 \cdot 10^{-15}$ \\
"""
true_latex_table_str = (
TRUE_PREAMBLE + "\n" + self.create_true_latex(middle_part)
)
self.assertEqual(latex_table_str, true_latex_table_str)
def test_include_score(self):
latex_table_str = self.model.latex_table()
middle_part = r"""
$y = x_{0}$ & $1$ & $1.05$ & $0.0$ \\
$y = \cos{\left(x_{0} \right)}$ & $2$ & $0.0232$ & $3.82$ \\
$y = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.12 \cdot 10^{-15}$ & $5.11$ \\
"""
true_latex_table_str = (
TRUE_PREAMBLE
+ "\n"
+ self.create_true_latex(middle_part, include_score=True)
)
self.assertEqual(latex_table_str, true_latex_table_str)
def test_last_equation(self):
latex_table_str = self.model.latex_table(
indices=[2], columns=["equation", "complexity", "loss"]
)
middle_part = r"""
$y = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.12 \cdot 10^{-15}$ \\
"""
true_latex_table_str = (
TRUE_PREAMBLE + "\n" + self.create_true_latex(middle_part)
)
self.assertEqual(latex_table_str, true_latex_table_str)
def test_multi_output(self):
equations1 = pd.DataFrame(
dict(
equation=["x0", "cos(x0)", "x0 + x1 - cos(x1 * x0)"],
loss=[1.052, 0.02315, 1.12347e-15],
complexity=[1, 2, 8],
)
)
equations2 = pd.DataFrame(
dict(
equation=["x1", "cos(x1)", "x0 * x0 * x1"],
loss=[1.32, 0.052, 2e-15],
complexity=[1, 2, 5],
)
)
equations = [equations1, equations2]
model = manually_create_model(equations)
middle_part_1 = r"""
$y_{0} = x_{0}$ & $1$ & $1.05$ & $0.0$ \\
$y_{0} = \cos{\left(x_{0} \right)}$ & $2$ & $0.0232$ & $3.82$ \\
$y_{0} = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.12 \cdot 10^{-15}$ & $5.11$ \\
"""
middle_part_2 = r"""
$y_{1} = x_{1}$ & $1$ & $1.32$ & $0.0$ \\
$y_{1} = \cos{\left(x_{1} \right)}$ & $2$ & $0.0520$ & $3.23$ \\
$y_{1} = x_{0}^{2} x_{1}$ & $5$ & $2.00 \cdot 10^{-15}$ & $10.3$ \\
"""
true_latex_table_str = "\n\n".join(
self.create_true_latex(part, include_score=True)
for part in [middle_part_1, middle_part_2]
)
true_latex_table_str = TRUE_PREAMBLE + "\n" + true_latex_table_str
latex_table_str = model.latex_table()
self.assertEqual(latex_table_str, true_latex_table_str)
def test_latex_float_precision(self):
"""Test that we can print latex expressions with custom precision"""
expr = sympy.Float(4583.4485748, dps=50)
self.assertEqual(to_latex(expr, prec=6), r"4583.45")
self.assertEqual(to_latex(expr, prec=5), r"4583.4")
self.assertEqual(to_latex(expr, prec=4), r"4583.")
self.assertEqual(to_latex(expr, prec=3), r"4.58 \cdot 10^{3}")
self.assertEqual(to_latex(expr, prec=2), r"4.6 \cdot 10^{3}")
# Multiple numbers:
x = sympy.Symbol("x")
expr = x * 3232.324857384 - 1.4857485e-10
self.assertEqual(
to_latex(expr, prec=2), "3.2 \cdot 10^{3} x - 1.5 \cdot 10^{-10}"
)
self.assertEqual(
to_latex(expr, prec=3), "3.23 \cdot 10^{3} x - 1.49 \cdot 10^{-10}"
)
self.assertEqual(
to_latex(expr, prec=8), "3232.3249 x - 1.4857485 \cdot 10^{-10}"
)
def test_latex_break_long_equation(self):
"""Test that we can break a long equation inside the table"""
long_equation = """
- cos(x1 * x0) + 3.2 * x0 - 1.2 * x1 + x1 * x1 * x1 + x0 * x0 * x0
+ 5.2 * sin(0.3256 * sin(x2) - 2.6 * x0) + x0 * x0 * x0 * x0 * x0
+ cos(cos(x1 * x0) + 3.2 * x0 - 1.2 * x1 + x1 * x1 * x1 + x0 * x0 * x0)
"""
long_equation = "".join(long_equation.split("\n")).strip()
equations = pd.DataFrame(
dict(
equation=["x0", "cos(x0)", long_equation],
loss=[1.052, 0.02315, 1.12347e-15],
complexity=[1, 2, 30],
)
)
model = manually_create_model(equations)
latex_table_str = model.latex_table()
middle_part = r"""
$y = x_{0}$ & $1$ & $1.05$ & $0.0$ \\
$y = \cos{\left(x_{0} \right)}$ & $2$ & $0.0232$ & $3.82$ \\
\begin{minipage}{0.8\linewidth} \vspace{-1em} \begin{dmath*} y = x_{0}^{5} + x_{0}^{3} + 3.20 x_{0} + x_{1}^{3} - 1.20 x_{1} - 5.20 \sin{\left(2.60 x_{0} - 0.326 \sin{\left(x_{2} \right)} \right)} - \cos{\left(x_{0} x_{1} \right)} + \cos{\left(x_{0}^{3} + 3.20 x_{0} + x_{1}^{3} - 1.20 x_{1} + \cos{\left(x_{0} x_{1} \right)} \right)} \end{dmath*} \end{minipage} & $30$ & $1.12 \cdot 10^{-15}$ & $1.09$ \\
"""
true_latex_table_str = (
TRUE_PREAMBLE
+ "\n"
+ self.create_true_latex(middle_part, include_score=True)
)
self.assertEqual(latex_table_str, true_latex_table_str)
|